Modulation of gastrointestinal digestion of beta-lactoglobulin and micellar casein following binding by (-)-epigallocatechin-3-gallate (EGCG) and green tea flavanols

Donmez O., ATAÇ MOGOL B. , GÖKMEN V. , Tang N., Andersen M. L. , Chatterton D. E. W.

FOOD & FUNCTION, cilt.11, ss.6038-6053, 2020 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 11 Konu: 7
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1039/d0fo00783h
  • Dergi Adı: FOOD & FUNCTION
  • Sayfa Sayıları: ss.6038-6053


The effect of binding of flavonoids, (-)-epigallocatechin-3-gallate (EGCG) and green tea extract (GTE), to beta-lactoglobulin (beta-Lg) and micellar casein (micellar casein isolate, MCI) on protein digestibility was investigated. beta-Lg resisted digestion by pepsin, but in the presence of EGCG the digestion of beta-Lg was enhanced. Binding of EGCG to beta-Lg was identified by nitro blue tetrazolium (NBT) staining and found, by isothermal titration calorimetry, to be an enthalpy-driven exothermic process, with a binding constant of 19 950 L mol(-1). Binding promoted a more rapid digestion of beta-Lg during simulated upper duodenal digestion. NBT staining indicated a loss of binding of EGCG to beta-Lg during combined gastric and distal small intestinal digestion and correlated with the cleavage of beta-Lg. However, increased beta-Lg heteromer formation and reduced beta-Lg monomer digestibility were observed for the beta-Lg-GTE complex. MCI was more digestible than beta-Lg during pepsin digestion, but reduced digestibility was observed for both MCI-EGCG and MCI-GTE complexes, with loss of binding during intestinal digestion. The free radical scavenging capacity (FRSC) of EGCG remained stable for the beta-Lg-EGCG complex throughout the gastric and intestinal phases of digestion, but this was significantly lowered for the MCI-EGCG complex. These results indicated that polyphenols bind to milk proteins modulating thein vitrodigestibility and FRSC of beta-Lg and MCI as a result of the formation of complexes.