Optimization and physicochemical characterization of bacterial cellulose by Komagataeibacter nataicola and Komagataeibacter maltaceti strains isolated from grape, thorn apple and apple vinegars

Greser A. B., AVCIOĞLU N. H.

ARCHIVES OF MICROBIOLOGY, vol.204, no.8, 2022 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 204 Issue: 8
  • Publication Date: 2022
  • Doi Number: 10.1007/s00203-022-03083-6
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Environment Index, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database
  • Keywords: Komagataeibacter maltaceti, Komagataeibacter nataicola, 16S rRNA analysis, Bacterial cellulose, Characterization, CARBON-SOURCES, MICROBIAL CELLULOSE, ENHANCED PRODUCTION, NITROGEN-SOURCES, BY-PRODUCT, XYLINUS, INTERMEDIUS, WASTE, IDENTIFICATION, MEDIA
  • Hacettepe University Affiliated: Yes


Bacterial cellulose (BC) is a valuable biopolymer that is increasingly used in medical, pharmaceutical and food industries with its excellent physicochemical properties as high water-holding capacity, nanofibrillar structure, large surface area, porosity, mechanical strength and biocompatibility. Accordingly, the isolation, identification and characterization of potent BC producers from grape, thorn apple and apple vinegars were performed in this study. The strains isolated from grape and apple vinegars were identified as Komagataeibacter maltaceti and the strain isolated from thorn apple vinegar was identified as Komagataeibacter nataicola with 16S rRNA analysis. Optimized conditions were found as 8% dextrin, 1.5% (peptone + yeast extract) and 10% inoculation amount at pH 6.0 with a productivity rate of 1.15 g/d/L, a yield of 8.06% and a dry weight of 6.45 g/L for K. maltaceti, and 10% maltose, 1% (peptone + yeast extract) and 10% inoculation amount at pH 6.0 with a productivity rate of 0.96 g/L/d, a yield of 5.35% and a dry weight of 5.35 g/L for K. nataicola. Obtained BC from K. maltaceti and K. nataicola strains was more than 2.56- and 1.86-fold when compared with BC obtained from HS media and exhibited 95.1% and 92.5% WHC, respectively. Based on the characterization results, BC pellicles show characteristic FT-IR bands and have ultrafine 3D structures with high thermal stability. By means of having ability to assimilate monosaccharides, disaccharides and polysaccharide used in this study, it is predicted that both isolated Komagataeibacter species can be used in the production of biopolymers from wastes containing complex carbon sources in the future.