Escherichia coli Enumeration in a Capillary-Driven Microfluidic Chip with SERS

Creative Commons License

Dogan U., Sucularli F., YILDIRIM E., ÇETİN D., SULUDERE Z., BOYACI İ. H., ...More

BIOSENSORS-BASEL, vol.12, no.9, 2022 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 12 Issue: 9
  • Publication Date: 2022
  • Doi Number: 10.3390/bios12090765
  • Journal Name: BIOSENSORS-BASEL
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Applied Science & Technology Source, EMBASE, INSPEC, MEDLINE, Directory of Open Access Journals
  • Keywords: Escherichia coli, microfluidic chip, SERS detection, magnetic separation, gold nanorods, SENSITIVE DETECTION, RAPID DETECTION, BACTERIA, PLASMA, DIELECTROPHORESIS, NANOPARTICLES, BIOSENSOR, O157H7, DEVICE, SENSOR
  • Hacettepe University Affiliated: Yes


Pathogen detection is still a challenging issue for public health, especially in food products. A selective preconcentration step is also necessary if the target pathogen concentration is very low or if the sample volume is limited in the analysis. Plate counting (24-48 h) methods should be replaced by novel biosensor systems as an alternative reliable pathogen detection technique. The usage of a capillary-driven microfluidic chip is an alternative method for pathogen detection, with the combination of surface-enhanced Raman scattering (SERS) measurements. Here, we constructed microchambers with capillary microchannels to provide nanoparticle-pathogen transportation from one chamber to the other. Escherichia coli (E. coli) was selected as a model pathogen and specific antibody-modified magnetic nanoparticles (MNPs) as a capture probe in a complex milk matrix. MNPs that captured E. coli were transferred in a capillary-driven microfluidic chip consisting of four chambers, and 4-aminothiophenol (4-ATP)-labelled gold nanorods (Au NRs) were used as the Raman probe in the capillary-driven microfluidic chip. The MNPs provided immunomagnetic (IMS) separation and preconcentration of analytes from the sample matrix and then, 4-ATP-labelled Au NRs provided an SERS response by forming sandwich immunoassay structures in the last chamber of the capillary-driven microfluidic chip. The developed SERS-based method could detect 10(1)-10(7) cfu/mL of E. coli with the total analysis time of less than 60 min. Selectivity of the developed method was also tested by using Salmonella enteritidis (S. enteritidis) and Staphylococcus aureus (S. aureus) as analytes, and very weak signals were observed.