Phosphorus-Nitrogen compounds part 74. Syntheses of (p-dimethylamino) benzyl-spiro-(N/N)-cyclotriphosphazenes: Structural characterizations, bioactivity studies, DFT calculations and reactivity parameters


Tanrikulu G. I., ZÜLFİKAROĞLU A., ELMAS G., OKUMUŞ A., Kilic Z., HÖKELEK T., ...Daha Fazla

INORGANICA CHIMICA ACTA, cilt.569, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 569
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.ica.2024.122129
  • Dergi Adı: INORGANICA CHIMICA ACTA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Chemical Abstracts Core, Chimica, Compendex
  • Hacettepe Üniversitesi Adresli: Evet

Özet

Reactions of hexachlorocyclotriphosphazene (HCCP, N3P3Cl6), with equimolar amounts of N-methyl-N'-(p- dimethylaminobenzyl)-1,2-diaminoethane (1), N-ethyl-N'-(p-dimethyl-aminobenzyl)-1,2-diaminoethane (2), and N-methyl-N'-(p-dimethylaminobenzyl)-1,3-diami-nopropane (3) produced the corresponding tetrachloro-(pdimethylaminobenzyl)spiro-(N/N)-cyclotriphosphazenes (4, 5, and 6), regioselectively. Tetrapyrrolidino (4a-6a), tetrapiperidino (4b-6b), tetramorpholinophosphazenes (4c and 6c), dichlorodimorpholinophosphazene (5c) and tetra-1,4-dioxa-8-azaspiro[4,5]decanophosphazenes (DASD) (4d-6d) were synthesized from Cl-substitution reactions of 4, 5 and 6 with excess pyrrolidine, piperidine, morpholine, and DASD, respectively. Their structures were elucidated by MS, FTIR, NMR and single crystal X-ray diffraction (for 4, 4b and 6a) techniques. Hirshfeld surface (HS) analyzes of 4, 4b, and 6a were performed to visualize intermolecular interactions in the crystals. In addition, according to the antimicrobial activity test results, compound 6b shows a better inhibitory effect on S. aureus ATCC 25923 G(+) ((MIC)-C-center dot: 78.1 mu M) and C. tropicalis Y-12968 ((MIC)-C-center dot: 19.54 mu M) microorganisms. The interactions of cyclotriphosphazenes with 5 '-G/GATCC-3 ' and 5 '-A/AGCTT-3 ' sequences of DNA were evaluated by examining Bam HI and Hin dIII restriction enzyme digestion. The quantum chemical calculations of 4, 4b, and 6a were performed using DFT, and their experimental parameters were compared with the theoretical ones. Natural bond orbitals (NBOs) were determined and HOMO-LUMO energy gaps (Eg) were calculated as 3.55, 5.23, and 5.24 eV for 4, 4b, and 6a, respectively.