Jordan Derivations of Special Subrings of Matrix Rings


SAYIN U., KUZUCUOĞLU F.

ALGEBRA COLLOQUIUM, cilt.26, sa.1, ss.83-92, 2019 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 26 Konu: 1
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1142/s1005386719000087
  • Dergi Adı: ALGEBRA COLLOQUIUM
  • Sayfa Sayıları: ss.83-92

Özet

Let K be a 2-torsion free ring with identity and R-n (K, J) be the ring of all n x n matrices over K such that the entries on and above the main diagonal are elements of an ideal J of K. We describe all Jordan derivations of the matrix ring R-n (K, J) in this paper. The main result states that every Jordan derivation Delta of R-n (K, J) is of the form Delta = D + Omega, where D is a derivation of R-n (K, J) and Omega is an extremal Jordan derivation of R-n (K, J).