How does intraarticular dexmedetomidine injection effect articular cartilage and synovium? An animal study


AKÇA B. , ANKAY YILBAŞ A. , ÜZÜMCÜGİL F. , BÜYÜKAKKUŞ B. , Bahador Zirh E., Zeybek D. , ...Daha Fazla

BMC ANESTHESIOLOGY, cilt.20, sa.1, 2020 (SCI İndekslerine Giren Dergi) identifier identifier identifier

Özet

Background Intraarticular injections are widely used to provide pain relief after arthroscopic procedures and minimize the use of opioids. Dexmedetomidine has been proven to potentiate pain relief and postpone the demand for the first analgesic drug when it is used intraarticularly following arthroscopic knee procedures. However, the effects of dexmedetomidine on articular structures have not yet been evaluated. Our aim was to determine the effects of intraarticular dexmedetomidine injection on articular structures such as cartilage and synovium. Design Animal study. Methods Twenty adult rats (Sprague-Dawley) were enrolled in the study. Following appropriate aseptic and anesthetic conditions, dexmedetomidine (100 mcg/ml) (0.25 ml) was injected into the right knee joint (the study group) and normal saline solution (0.25 ml) into the left knee joint (the control group) of the rats. Four rats were sacrificed from each group on days 1, 2, 7, 14, and 21, and knee joint samples were obtained. Histologists evaluated the articular and periarticular regions and the synovium using histological sections, and a five-point scale was used to grade the inflammatory changes in a blinded manner. Results The groups were found to be similar in terms of median congestion scores, edema and inflammation scores, subintimal fibrosis, neutrophil activation and cartilage structure at each of the time intervals. Conclusion In our placebo-controlled, in vivo trial, the intraarticular use of dexmedetomidine seemed to be safe with respect to the studied histopathological parameters. However, complementary studies investigating the histopathological effects, analgesic dosage and adverse effects of dexmedetomidine on damaged articular structure models are needed.