Preparation of chiral monoliths with new modulation of the monolith surface chemistry for the enantioseparation of chiral drugs by nano-liquid chromatography


Bayındır S., Aydoğan C., DENİZLİ A.

Journal of Chromatography A, cilt.1713, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 1713
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.chroma.2023.464573
  • Dergi Adı: Journal of Chromatography A
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Analytical Abstracts, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Compendex, Environment Index, Food Science & Technology Abstracts, MEDLINE, Pollution Abstracts, Veterinary Science Database
  • Anahtar Kelimeler: Chiral separation, Drug analysis, Enantioseparation, Monolith, Nano-liquid chromatography
  • Hacettepe Üniversitesi Adresli: Evet

Özet

Here, we report the preparation and application of two new chiral monoliths for the enantioseparation of chiral drugs in nano-LC. Using 3‑chloro-2-hydroxypropylmethacrylate (HPMA-Cl, 2) as a precursor monomer, two different chiral monomers namely, Nα-Boc-Lys-HPMA (3A) and Nα-Fmoc-Lys-HPMA (3B) were synthesized and used for the preparation of chiral polymer monoliths. The first monolithic column (referred to as monolith I) was prepared by an in-situ polymerization of Nα-Boc-Lys-HPMA as the chiral monomer and ethylene dimethacrylate while the second monolithic column (referred to as monolith II) was prepared by an in-situ polymerization of Nα-Fmoc-Lys-HPMA as the chiral monomer and ethylene dimethacrylate as the crosslinker. Methanol and 1-propanol were used as the porogenic solvents. The prepared chiral monoliths were investigated for the enantioseparation of chiral drugs, including β-blockers (e.g., atenolol, propranolol, metoprolol) and anti-inflammatory drugs (e.g., ketoprofen, ibuprofen, flurbiprofen, naproxen, etodolac). The enantioseparation could be achieved via the formation of π-π interactions on the aromate-rich and aromate-poor chiral molecules while enantioseparation mechanism of chiral drugs included mostly π-π interactions and hydrogen bonding. Monolith II showed better enantioselectivity than Monolith I and the resolution values up to 2.12 were successfully achieved.