Osteogenic differentiation of MC3T3-E1 cells on different titanium surfaces

Hakki S. S. , Bozkurt S. B. , Hakki E. E. , KORKUSUZ P. , PURALI N. , Koc N., ...Daha Fazla

BIOMEDICAL MATERIALS, cilt.7, 2012 (SCI İndekslerine Giren Dergi) identifier identifier identifier


mRNA expressions related to osteogenic differentiation of MC3T3-E1 cells on electro-polished smooth (S), sandblasted small-grit (SSG) and sandblasted large-grit (SLG) surfaces of titanium alloys were investigated in vitro. Gene expression profiles of cells were evaluated using the RT2 Profiler PCR microarray on day 7. Mineralizing tissue-associated proteins, differentiation factors and extracellular matrix enzymes mRNA expressions were measured using Q-PCR. SLG surface upregulated 23 genes over twofolds and downregulated 3 genes when compared to the S surface. In comparison to the SSG surface, at least a twofold increase in 25 genes was observed in the SLG surface. BSP, OCN, OPN, COL I and ALP mRNA expressions increased in the SLG group when compared to the S and the SSG groups. BMP-2, BMP-6 and TGF-beta mRNA expressions increased in both the SSG and the SLG surfaces. MMP-2 and MMP-9 mRNA expressions increased as the surface roughness increased. This study demonstrated that surface roughness of titanium implants has a significant effect on cellular behavior and SLG surface apparently increased gene expressions related to osteogenesis when compared to the S and the SSG surfaces.