Modules invariant under automorphisms of their covers and envelopes


Creative Commons License

Guil Asensio P. A., Tutuncu D. K., Srivastava A. K.

ISRAEL JOURNAL OF MATHEMATICS, cilt.206, sa.1, ss.457-482, 2015 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 206 Sayı: 1
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1007/s11856-014-1147-3
  • Dergi Adı: ISRAEL JOURNAL OF MATHEMATICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.457-482
  • Hacettepe Üniversitesi Adresli: Evet

Özet

In this paper we develop a general theory of modules which are invariant under automorphisms of their covers and envelopes. When applied to specific cases like injective envelopes, pure-injective envelopes, cotorsion envelopes, projective covers, or flat covers, these results extend and provide a much more succinct and clear proofs for various results existing in the literature. Our results are based on several key observations on the additive unit structure of von Neumann regular rings.