Facile L-Glutamine delivery to erythrocytes via DOPC-DPPG mixed liposomes


ALP G. , ER ÖZTAŞ Y.

JOURNAL OF LIPOSOME RESEARCH, 2021 (Journal Indexed in SCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume:
  • Publication Date: 2021
  • Doi Number: 10.1080/08982104.2021.1918152
  • Title of Journal : JOURNAL OF LIPOSOME RESEARCH

Abstract

Sickle cell disease (SCD) is a mortal erythrocyte-based disease which is hard to treat effectively. Development of a treatment method that can prevent deoxygenation of erythrocytes or reduce the oxidative stress of sickle erythrocytes is one of the important issues towards SCD. Among a wide variety of potential drug carriers, liposomes are advantageous and preferable with their easy preparation and biocompatibility. In this study, L-Glutamine (Gln) loaded liposomes were prepared with 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-Dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DPPG). Liposomes were characterized via zeta potential, size measurements, differential scanning calorimetry, Fourier Transform Infra-red Spectroscopy and they were visualized via transmission electron microscopy and scanning electron microscopy. Effect of the encapsulated amount of Gln was investigated by encapsulating Gln at three different concentrations (i.e0.20 mM, 40 mM and 60 mM). Drug encapsulation and release studies were implemented with high pressure liquid chromatography (HPLC). The encapsulation efficiency of Gln was determined to be the higher than the ones reported in the literature: 83.6%, 87.1% and 84.9% for 20 mM, 40 mM and 60 mM Gln, respectively. It was found that after 6 hours, liposomes loaded with 60 mM of Gln had released 45.7% of Gln. Optical microscopy images of the erythrocytes after 3 hours of incubation and haemolysis measurements proved that presence of liposomes did not cause any structural changes on the erythrocyte shape. Overall, it was concluded that L-Gln loaded PC/PG liposomes provide promising results in terms of developing a new drug delivery platform for SCD.