See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/295654071
Chromosome number, karyotype analysis and pollen morphology of turkish endemic Tordylium elegans (Boiss. \& Bal.) Alava \& Hub.-Mor. (Apiaceae)

Article in Pakistan Journal of Botany • August 2011

Citations

2

5 authors, including:
C. Ayşe Nihal Gomurgen

Hacettepe University
18 PUBLICATIONS 138 CItations
SEE PROFILE

4

Edibe Özmen
Hacettepe University

11 PUBLICATIONS 15 CITATIONS
SEE PROFILE

READS

71

Cahit Dogan
Hacettepe University
14 PUBLICATIONS 95 CItations
SEE PROFILE
(偪)
Birol başe
Bitlis Eren University
26 PUBLICATIONS 97 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:prepration for a project about Turkish bee pollen range View project

CHROMOSOME NUMBER, KARYOTYPE ANALYSIS AND POLLEN MORPHOLOGY OF TURKISH ENDEMIC TORDYLIUM ELEGANS (BOISS. \& BAL.) ALAVA \& HUB.-MOR. (APIACEAE)

AYŞE NİHAL GÖMÜRGEN ${ }^{1}$, CAHİT DOĞAN ${ }^{1}$, EDİBE ÖZMEN ${ }^{1}$, BİROL BAŞER ${ }^{\mathbf{2}}$ AND HAŞİM ALTINÖZLÜ ${ }^{1}$
${ }^{1}$ Department of Biology, Science Faculty, Hacettepe University, Beytepe, 06800 Ankara, Turkey. ${ }^{2}$ Department of Biology, Science and Arts Faculty, Gazi University, Teknikokullar, 06500 Ankara, Turkey. e-mail: gomurgen@hacettepe.edu.tr

Abstract

The chromosome number, karyotype and pollen analysis of Turkish endemic species Tordylium elegans (Boiss. \& Bal.) Alava \& Hub.-Mor. are reported in this paper for the first time. The somatic chromosome number is determined as $2 n=4 x=$ 16. It is a tetraploid species and the basic chromosome number is $x=4$. Haploid karyotype formula is $4 \mathrm{sm}+3 \mathrm{~m}+1 \mathrm{~T}$. The pollen morphology of T. elegans was examined under light and scanning electron microscope. Pollen of T. elegans are radially symmetrical, isopolar, tricolporate, perprolate and equatorially-constricted.

Introduction

The Apiaceae (Umbelliferae) are mostly temperate herbs almost always with umbellate inflorescences comprising about 300 genera and 3,000 species. The relationship at higher level within Apiaceae is not clear particularly in the largest subfamily Apioideae. Molecular phylogenetical analysis systems were also used for clarifying the evolutionary history of subfamily Apioideae (Downie et al., 2000; Downie et al., 2001; Ajani et al,. 2008). Apiaceae has 4 endemic genera and 140 endemic species in Turkey (Pimenov \& Leonov, 2004). This means that in Asiatic Turkey Apiaceae has not only the highest concentration of endemism at species-level but also the species diversity in Asia and probably in the world. The genus Tordylium L., includes 17 species in Turkey and 9 of them are endemic to Turkey (Alava, 1972; Duman, 2000). T. elegans (Boiss. \& Bal.) Alava \& Hub.-Mor. is one of these endemic species of Turkey. It is an East Mediterranean element. It grows on rocky places, fields, roadsides, from sea level to 2140 m .

Chromosome number has been recorded only in 10 Tordylium species (Tamaschjan, 1933; Garde \& Garde, 1954; Runemark, 1968; Al-Eisawi \& Jury, 1988; AlEisawi, 1989; Capineri et al., 1978; Dobes et al., 1997; Silvestre, 1978; Silvestre, 1993; Strid \& Franzén, 1981; Geldykhanov, 1986; Baltisberger \& Baltisberger, 1995; Vogt \& Aparicio, 1999; Constance et al., 1971, 1976). However, there are no reports on the chromosome number and karyotype of T. elegans. According to Anderson (1937) cytological evidence, can do more than discriminate between species. Cytological evidence has assisted clarifying taxonomic relationships in a large number of genera. As a rule, systematic and cytological approaches have led to conclusions, which were in general agreement (Frankel, 1941). Cytological characteristics and pollen morphology have a significance exceeding that of ordinary morphological characters, so chromosome number identification and pollen analysis of the species are therefore significant. The purpose of the present study is to determine chromosome number to analyze the chromosome and pollen morphology of endemic T. elegans.

Material and Methods

Seeds and samples of T. elegans were collected from Osmaniye, Kadirli, around Ciccik Village, 150-200 m, near roadsides in 2006 by the last author. Voucher specimens were deposited at Hacettepe University Herbarium (H.U.).

Karyotype: The study was performed on actively growing root tips. The seeds were germinated at room temperature $\left(20^{\circ} \mathrm{C}\right)$ on moist filter paper in Petri dishes. Preparations were made according to the method given by Gömürgen et al., (2005). Digital photos of five well spread metaphase plates were taken by the Nikon Eclipse E600 light microscope. The chromosomes in the karyotype were ordered by decreasing length. The detection of the homologous chromosomes and the determination of their position in the karyograms were carried out following the method proposed by Levan et al., (1964). The measurements obtained from ten-long and short arm length-metaphase plates allowed the construction of the idiograms of the taxon. Permanent slides are stored in the Department of Biology, Hacettepe University, Ankara.

Pollen: Pollen slides were prepared according to Erdtman's (1960) method. The LM studies were examined under Olympus CX41 microscope with the aid of an apochromatic oil immersion objective and periplan eyepieces. Measurements were based on 50 pollen grains. Mean, standard deviation and variation of measurements were calculated according to Sokal \& Rohlf (1995).

For scanning electron microscopy (SEM), the pollen grains were put on stubs, sputter-coated with gold plate and examined under a Jeol JSM-6060 scanning electron microscope.

The terminology used here is that of Erdtman (1952).

Results and Discussion

Chromosomes: The somatic chromosome number of T. elegans is $2 \mathrm{n}=16$ (Fig. 1). Detailed chromosome parameters [long and short arm and their SD, total length of the chromosomes, arm ratio ($r=1 / \mathrm{s}$), centromeric index ($\mathrm{i}=100$ $\times \mathrm{s} / \mathrm{c})$] are given in Table 1. The total chromosome length varies between $1.26-3.15 \mu \mathrm{~m}$. It has a short chromosome set. Total haploid chromosome length is $17.67 \mu \mathrm{~m}$. The difference between the longest and the shortest chromosome is $1,89 \mu \mathrm{~m}$. Chromosome pairs 1,2 and 7 have median, 3,4 5 and 6 have submedian and the $8^{\text {th }}$ one has terminal centromere position. Terminal chromosomes (T) are the shortest pairs. The karyotype formula is $2 n=4 x=1 T+3 m+$ 4 sm . The basic number is $x=4$. T. elegans is a tetraploid ($2 n$ $=4 x=16$). This is the first chromosome count and karyotype analysis for this species. Karyogram and haploid chromosome set idiogram are given in Figs. 2-3.

Table 1. Chromosome parameters in T. elegans ($2 \mathrm{n}=16$). $\mathrm{m}=$ median, $\mathrm{sm}=$ submedian, $\mathrm{T}=$ terminal.

Chromosome pairs	Chromosome length ($\mu \mathrm{m}$)			$\begin{gathered} \text { Arm ratio } \\ \mathbf{r}=\mathrm{L} / \mathbf{S} \end{gathered}$	$\begin{aligned} & \text { Centromeric } \\ & \text { index } \\ & \mathrm{i}=100 \times \mathrm{s} / \mathrm{c} \end{aligned}$	Relative length (\%)	Centromere position
	Long arm $(\pm$ SD)	Short arm (\pm SD)	Total				
I	1.93 ($\pm 0.615)$	1.22($\pm 0.127)$	3.15	1.59	38.73	17.83	m
II	$1.59(\pm 0.456)$	$0.99(\pm 0.220)$	2.58	1.61	38.37	14.60	m
III	$1.59(\pm 0.326)$	0.84 ($\pm 0.225)$	2.43	1.89	37.17	13.75	sm
IV	1.45 ($\pm 0.368)$	$0.81(\pm 0.181)$	2.26	1.79	35.84	12.79	sm
V	1.35 ($\pm 0.367)$	0.80 ($\pm 0.175)$	2.15	1.69	37.21	12.17	sm
VI	$1.30(\pm 0.345)$	$0.71(\pm 0.109)$	2.01	1.83	35.32	11.38	sm
VII	1.06 ($\pm 0.298)$	$0.77(\pm 0.127)$	1.83	1.38	42.08	10.35	m
VIII	1.26 ($\pm 0.333)$	$0.00(\pm 0.00)$	1.26	∞	0.00	7.13	T

Fig. 1. Somatic metaphase chromosomes of T. elegans $(2 n=16)$.

Fig. 2. Karyogram of T. elegans.

Fig. 3. Haploid idiogram of T. elegans.

Pollen: Pollen grains were found to be radially symmetrical, isopolar, tricolporate, perprolate and equatorially-constricted (dumb-bell shaped). The polar axis measured $29.83 \mu \mathrm{~m}$ and the equatorial axis $12.68 \mu \mathrm{~m}$. Amb was triangular and 12.52 $\mu \mathrm{m}$ in diameter. The apocolpium was rather wide; colpi ends could not be seen in polar area.

In polar view, the exine was $4.39 \mu \mathrm{~m}$ thick at mesocolpia. The sexine was thicker than the nexine; sexine $3.41 \mu \mathrm{~m}$, nexine $0.98 \mu \mathrm{~m}$ at mesocolpia. In equatorial view, the exine was $1.90 \mu \mathrm{~m}$, the sexine $1.00 \mu \mathrm{~m}$ and the nexine

Chromosome count of Tordylium species based on previous studies is given in Table 2. Although the first chromosome count of T. maximum was given as $2 \mathrm{n}=22$ by Tamaschan (1933), later researchers have reported that this species has $2 \mathrm{n}=20$ chromosomes (Runemark, 1968; Silvestre, 1978; Strid \& Franzén, 1981; Geldykhanov, 1986; Baltisberger \& Baltisberger, 1995; Dobes et al., 1997). Chromosome number of T. aegaenum, T. apulum, T. pestalozzae, T. syriacum, T. cordatum, T. aegyptiacum were given as $\mathrm{n}=10,2 \mathrm{n}=20$ (Garde \& Garde, 1954; Runemark, 1968; Constance et al., 1976; Capineri et al., 1978; Al-Eisawi \& Jury, 1988; Al-Eisawi, 1989; Vogt \& Aparicio, 1999; Silvestre, 1993). T. officinale, has $2 \mathrm{n}=18$ chromosomes (Silvestre, 1993). T. hirtocarpum has $2 \mathrm{n}=8$ chromosomes (Runemark, 1968). This is the lowest chromosome number reported for Tordylium species.

The most important studies about chromosome number of Tordylium genus were that of Runemark (1968) and AlEisawi \& Jury (1988). According to Runemark (1968) the basic chromosome number of this group is $x=10$. It is difficult to explain the presence of $2 \mathrm{n}=8$ (T. hirtocarpum). If basic chromosome number is $\mathrm{x}=10$ T. hirtocarpum must be derived from haploid number by loosing two chromosomes and it must be sterile but Al-Eisawi \& Jury (1988) state that T. hirtocarpum is fertile. Constance et al. (1971) state chromosome number of T. trachycarpum (Boiss.) [Syn: Ainsworthia trachycarpa Boiss.] as $\mathrm{n}=8$ but later on another studies they gave chromosome number as n $=9$ and $\mathrm{n}=10$ for this species (Constance et al., 1976). AlEisawi \& Jury (1988) state the basic chromosome number as $\mathrm{x}=4$, because of the presence chromosome number $2 \mathrm{n}=$ 16 (T. trachycarpum (Boiss.) Al-Eisawi \& Jury [Syn: Ainsworthia trachycarpa, $\mathrm{n}=8$] in this group. According to Al-Eisawi \& Jury (1988) Ainsworthia are congeneric with the genus Tordylium. $2 \mathrm{n}=16$ is tetraploid and $2 \mathrm{n}=20$ is pentaploid species, derived from crossing between tetraploid with $2 \mathrm{n}=16$ and hexaploid $2 \mathrm{n}=24$ or it is derived from one or the other loosing or gaining four chromosomes. The authors accept that the basic number in the family range from $\mathrm{x}=4$ to $\mathrm{x}=11$. Our results (T. elegans $2 \mathrm{n}=16$) also support Al-Eisawi \& Jury's (1988) idea of basic number $x=4$.
$0.90 \mu \mathrm{~m}$ at apocolpia. At the end of the carina, the exine was $2.55 \mu \mathrm{~m}$, the sexine $1.57 \mu \mathrm{~m}$ and the nexine $0.98 \mu \mathrm{~m}$. In equatorial area, the exine was $3.23 \mu \mathrm{~m}$, the sexine 2.09 $\mu \mathrm{m}$ and the nexine $1.14 \mu \mathrm{~m}$. The carina was $5.25 \mu \mathrm{~m}$ and costa $1.67 \mu \mathrm{~m}$ thick.

Colpi ends were rounded, the margin was even and colpi short were not reaching to polar area; $\mathrm{Clg} 18.25 \mu \mathrm{~m}$, Clt narrower than $0.98 \mu \mathrm{~m}$. Pores transversely elongated; Plg $2.00 \mu \mathrm{~m}$, Plt $2.78 \mu \mathrm{~m}$. The pore latitude was wider than the colpus latitude.

Table 2. Previous chromosome counts for Tordylium L., species.

	Table 2. Previous chromosome counts for Tordylium L., species.	
Species	Chromosome number	References
T. maximum L.	$2 \mathrm{n}=22$	Tamamschjan, 1933
	$2 \mathrm{n}=20$	Runemark, 1968, Geldykhanov, 1986,
T. apulum L.		Franzén, 1981, Silvestre, 1978, Dobes et al., 1997
T. pestalozzae Boiss.	$2 \mathrm{n}=20$	Runemark, 1968, Capineri et al., 1978
T. syriacum L.	$2 \mathrm{n}=20$	Runemark 1968
	$\mathrm{n}=10$	Vogt \& Aparicio, 1999
T. aegyptiacum Lam	$2 \mathrm{n}=20$	Garde \& Garde, 1954, Silvestre, 1993
T. aegaeum Runem.	$\mathrm{n}=10$	Al-Eisawi \& Jury, 1988
T. officinale L.	$2 \mathrm{n}=20$	Runemark, 1968
	$2 \mathrm{n}=18$	Runemark, 1968
T. cordatum (Jacq.) Poir.	$\mathrm{n}=9$	Silvestre,1993
	$2 \mathrm{n}=20$	Garde \& Garde, 1954
T. hirtocarpum Cand.	$\mathrm{n}=10$	Constance et al., 1976
T.trachycarpum (Boiss.)	$2 \mathrm{n}=8$	Runemark, 1968
[Synonym: Ainsworthia trachycarpa Boiss.]	$\mathrm{n}=8$	Constance et al., 1971
	$\mathrm{n}=8$	Al-Eisawi \& Jury, 1988
T.elegans (Boiss. \& Bal)	$\mathrm{n}=9$	Constance et al., 1976
Alava \& Hub.-Mor	$\mathrm{n}=10$	Constance et al., 1976

The surface ornamentation was rugulate-striate under SEM (Fig. 4), perforate under LM (Fig. 5). Mean, SD and variation of palynological measurements are given in Table 3.

Al-Eisawi \& Jury (1988) divided Tordylium species into 4 main groups according to pollen morphology. One of these groups was characterised having is dumb-bell shaped, equatorially constricted pollen and with discontinuous carinae. The pollen of T. elegans are small sized (Al-Eisawi \& Jury, 1988). Which correspond to our findings.

Cerceau-Larrival (1963) classified the pollen grains of the sub-tribe Tordylinae under 'The equatoriallyconstricted type'. According to her study, this pollen type has a size range from $50-70 \mu \mathrm{~m}$; the exine assumes a proportion such that in the equatorial zone, the pollen
grain becomes winged on account of carina of the exine, the ectoapertures get smaller and are often scarcely visible (Al-Eisawi \& Jury, 1988). The pollen of T. elegans are also equatorially-constricted and winged on account of carina of the exine. However, the pollen of T. elegans are smaller than Cerceau-Larrival's (1963) 'The equatoriallyconstricted type'.

According to Al-Eisawi \& Jury (1988), Ainsworthia is congeneric with the genus Tordylium. Palynological characters of T. elegans and A. trachycarpa show very distinc-similarities such as pollen size, shape and exine ornamentation. Besides, chromosome number of both species is $2 \mathrm{n}=16$. Palynological characters and chromosome numbers of these species endorse each other.

Table 3. Numeric results from palynological measurements in T. elegans.

Table 3. Numeric results from palynological measurements in T. elegans.	
\mathbf{P} / \mathbf{E}	$\mathbf{2 . 3 5}$
$\mathrm{P} \pm$ std (range) $\mu \mathrm{m}$	$29.83 \pm 2.51(25.48-36.24)$
$\mathrm{E} \pm$ std (range) $\mu \mathrm{m}$	$12.68 \pm 1.21(9.80-15.68)$
Amb \pm std (range) $\mu \mathrm{m}$	$12.52 \pm 1.16(9.80-14.70)$
Exine at msc. $\mu \mathrm{m}$	$4.39(3.92-5.88)$
Exine at apc. $\mu \mathrm{m}$	$1.90(1.47-1.96)$
Exine at end of car. $\mu \mathrm{m}$	$2.55(2.45-2.94)$
Exine at equa. area $\mu \mathrm{m}$	$3.23(2.94-3.92)$
Carina $\mu \mathrm{m}$	$5.25(4.0-6.84)$
Costa $\mu \mathrm{m}$	$1.67(1.47-1.96)$
$\mathrm{Clg} \mu \mathrm{m}$	18.25
$\mathrm{Clt} \mu \mathrm{m}$	<0.98
Plg $/$ Plt	0.72
Plg $\mu \mathrm{m}$	2.00
Plt $\mu \mathrm{m}$	2.78
Aperture number/type	3-colporate
$\mathrm{P}=$ polar axis, E=equatorial axis, Amb=diameter in polar view, msc.=mesocolpia, apc.=apocolpia, car.=carina,	
equa. $=$ equatorial, Clg=length of colpus, Clt=width of colpus, Plg=length of porus, Plt=width of porus.	

Fig. 4. SEM micrographs of pollen grains of T. elegans. (a) equatorial view, (b) exine ornamentation, (c) detailed view of apertures.

Fig. 5. LM micrographs of pollen grains of T. elegans. (a)-(b) polar view ($a=$ low focus, $b=h i g h$ focus), (c)-(d) equatorial view (c=low focus, $\mathrm{d}=$ high focus).

References

Ajani, Y., A. Ajani, J.M. Cordes, M.F. Watson and S.R. Downie. 2008. Phylogenetic analysis of nrDNA ITS sequences reveals relationships within five groups of Iranian Apiaceae subfamily Apioideae. Taxon, 57: 383-401.
Alava, R. 1972. Tordylium L. In: Flora of Turkey and East Aegean Islands 4. (Ed.): P.H. Davis. Edinburgh Univ. Press, Edinburgh, pp. 504-512.

Al-Eisawi, D. and S.L. Jury. 1988. A taxonomic revision of the genus Tordylium L. (Apiaceae). Botanical Journal of the Linnean Society, 97: 357-403.
Al-Eisawi, D.M.H. 1989. Chromosome counts of Umbelliferae of Jordan. Annali di Botanica, 47: 201-214.
Anderson., E. 1937. Cytology in its relation to taxonomy. The Botanical Review, 3 (7): 335-350.
Baltisberger., M. and E. Baltisberger. 1995. Cytological data of Albanian plants. Candollea, 50 (2): 457-493.

Capineri, R., G. D'amato and P. Marchi. 1978. Numeri cromosomici per la Flora Italiana 534-583. Informatore Botanico Italiano, 10: 421-465.
Cerceau-Larrival, M. 1963. Le pollen d'Ombellifères mediterranéennes, 2. Tordylineae Drude. Pollen et Spores, 4: 95-104.
Constance L, T.I. Chuang and C.R. Bell. 1971. Chromosome numers in Umbelliferae IV. American Journal of Botany, 58: 577-587.
Constance L, T.I. Chuang and C.R. Bell. 1976. Chromosome numers in Umbelliferae V. American Journal of Botany, 63: 608-625.
Dobes C, B. Hahn and W. Moravetz. 1997. Chromosomenzahlen zur Gefässpflanzen-Flora Österreich. Linzer Biologische Beiträge, 29 (1): 5-43.
Downie, S.R., M.F. Watson, K. Spalik and D.S. Katz-Downie. 2000. Molecular systematics of Old World Apioideae (Apiaceae): relationships among some members of tribe Peucedaneae sensu lato, the placement of several islandendemic species, and resolution within the apioid superclade. Canadian Journal of Botany, 78: 506-528.
Downie, S.R., G.M. Plunkett, M.F. Watson, K. Spalik, D.S. Katz-Downie, C.M. Valiejo-Roman, E.I. Terentieva, A.V. Troitsky, B.Y. Lee, J. Lahham and A. El-Oqlah. 2001. Tribes and clades within Apiaceae subfamily Apioideae: the contribution of molecular data. Edinburgh Journal of Botany, 58 (2): 301-330.
Duman, H. 2000. Tordylium L. In: Güner, A., N. Özhatay, T. Ekim and K.H.C. Başer (Eds.) Flora of Turkey and East Aegean Islands (Suppl.2) 11. Edinburgh Univ. Press, Edinburgh, pp. 144-145.
Ekim, T., M. Koyuncu, M. Vural, H. Duman, Z. Aytac and N. Adıgüzel. 2000. Red Data Book of Turkish Plants. Türkiye Tabiatını Koruma Derneği, Ankara.
Erdtman, G. 1952. Pollen Morphology and Plant Taxonomy. 1. Angiosperms. Almqvist and Wiksell, Stockholm.

Erdtman, G. 1960. The acetolysis method: A revised description. Svensk. Bot. Tidskr., 54: 561-564.
Frankel, O. 1941. Cytology and Taxonomy of Hebe, Veronica and Pygmeea. Nature, 147: 17-118.
Garde, A. and N. Garde. 1954. Contribuicao para o estudio cariologico da familia Umbelliferae. III. Broteria, 23: 5-25.
Geldykhanov, A.M. 1986. Chromosome numbers in some species of the family Apiaceae from Turkmenia. Bot. Zurn., 71: 1144.
Gömürgen A.N. and H. Altınözlü. 2005. Chromosome Number and Karyotype Analysis of Kalidiopsis wagenitzii Aellen. Pak.J.Bot.,37 (2) : 307-311.
Levan, A., K. Fredga and A.A. Sandberg. 1964. Nomenclature for centromeric position on chromosomes. Hereditas, 52: 201-220.
Pimenov, M.G. and M.V. Leonov. 2004. The Asian Umbelliferae Biodiversity Database (ASIUM) with Particular Reference to South-West Asian Taxa. Turkish Journal of Botany, 28: 139-145.
Runemark H (1968). Studies in the Aegean Flora XIII Tordylium L. (Umbelliferae). Botanic. Notizer. 21: 233-258.

Silvestre, S. 1978. Contribucion al estudio cariologicos de la familia Umbelliferae en la peninsula Iberica. 11. Lagascalia, 7: 163-172.
Silvestre, S. 1993. Números cromosomáticos para la flora Española 643-663. Lagascalia, 17: 151-160.
Sokal, R.P. and J.F. Rholf. 1995. Biometry (3rd Edition). W.H. Freeman and Company, New York.
Strid, A. and R Franzén. 1981. Chromosome number reports LXXIII. Taxon, 30: 829-842.

Tamamschjan, S. 1933. Materialen zur Caryosystematik der Kultivierten und wilden Umbelliferae. Bulletin of Applied Genetics and Plant Breeding, 2: 137-161.
Vogt, R. and A. Aparicio. 1999. Chromosome numbers of plants collected during Iter Mediterraneum IV in Cyprus Bocconea. Monographiae Herbarii Mediterranei Panormitani, 11: 117-169.

