EPR spin label study of walnut oil effects on phosphatidylcholine membranes

Horasan N., Sunnetcioglu M., Sungur R.

CHEMISTRY AND PHYSICS OF LIPIDS, vol.140, pp.1-10, 2006 (SCI-Expanded) identifier identifier identifier


Effects of walnut oil (WO) on dynamic and thermodynamic properties of 0-50 wt% cholesterol (CH) containing dimyristoylphosphatidylcholine (DMPQ and 10 wt% CH containing dipalmitoylphosphatidylcholine (DPPC) membrane dispersions were studied by electron paramagnetic resonance (EPR), using 5-doxyl stearic acid (5-DSA) and 16-doxyl stearic acid (I 6-DSA). Incorporation of 10 wt% WO alone decreased the phase transition temperature and created depth-dependent effects at the gel phase. The order increased close to the head region and decreased in the hydrocarbon core of the DMPC bilayer. For DPPC, the order decreased both close to head region and in the hydrocarbon core. Ten weight percent WO did not have considerable effect at the fluid phase for both DMPC and DPPC. Incorporation of 40 wt% WO into DMPC created an abrupt decrease in the maximum hyperfine splitting values after 305 K. The effect of 10 wt% WO in CH containing DMPC dispersions was dependent on the CH concentration. An increase and a decrease in the order were observed at low and high CH concentrations, respectively. Incorporation of WO created different effects on fluidity of 10 wt% CH containing DMPC and DPPC dispersions. Close to the head group region, the order in DMPC increased both in the gel and fluid phases; but for DPPC, an opposite effect was observed in both of the phases. In the hydrocarbon core of the bilayer, addition of 10 wt% WO into 10 wt% CH containing DMPC decreased the order in the gel phase and WO did not affect the order in the fluid phase. For DPPC, WO effects were observed to alter with temperature. In the studied temperature range, order parameters, diffusion constants and effective tilt angles were obtained from simulations of the spectra using Microscopic Order Macroscopic Disorder (MOMD) and Vary Anisotropic Reorientation (VAR) models. For 16-DSA, spectra were also simulated using two domains with EPRSIM. (c) 2005 Elsevier Ireland Ltd. All rights reserved.