A Bijection Between the Indecomposable Summands of Two Multiplicity Free Tilting Modules


Creative Commons License

D'Este G., TEKİN AKÇİN H. M.

BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, vol.48, no.5, pp.2521-2538, 2022 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 48 Issue: 5
  • Publication Date: 2022
  • Doi Number: 10.1007/s41980-021-00620-9
  • Journal Name: BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, MathSciNet, zbMATH
  • Page Numbers: pp.2521-2538
  • Keywords: Tilting modules, Partial tilting modules, Short exact sequences, Quivers, ALGEBRAS
  • Hacettepe University Affiliated: Yes

Abstract

We show that there is a reflection type bijection between the indecomposable summands of two multiplicity free tilting modules X and Y. This bijection fixes the common indecomposable summands of X and Y and sends indecomposable projective (resp., injective) summands of exactly one module to non-projective (resp., non-injective) summands of the other. Moreover, this bijection interchanges the two possible non-isomorphic complements of an almost complete tilting module.