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Barış Akın (student)

Hacettepe University, School of Medicine, Ankara, Turkey

Abstract

In this study, cognitive and behavioral emotion regulation strategies (ERS)
are classified by using machine learning models driven by a new local EEG
complexity approach so called Frequency Specific Complexity (FSC) in resting-
states (eyes-opened (EO), eyes-closed (EC)). According to international 10-20
electrode placement system, FSC is defined as entropy estimations in Alpha
(8−12 Hz) and Beta (12.5−30 Hz) frequency band intervals of non-overlapped
short EEG segments to observe local EEG complexity variations at 62 points on
scalp surface. The healthy adults who use both rumination and cognitive dis-
traction frequently are included in the 1st groups, while the others who use these
strategies rarely are included in the 2nd group with respect to Cognitive Emo-
tion Regulation Questionnaire (CERQ) scores of them. EEG data and CERQ
scores are downloaded from publicly available data-base LEMON. In order to
test the reliability of the proposed method, five different supervised machine
learning methods in addition to two Extreme Learning Machine models are ex-
amined with 5-fold cross-validation for discrimination of the contrasting groups.
The highest classification accuracy (CA) of 99.47% is provided by Class-specific
Cost Regulation Extreme Learning Machines in EC state. Regarding cortical
regions (anterio-frontal, central, temporal, parieto-occipital), the regional FSC
estimations did not provide the higher performance, however, corresponding sta-
tistical distribution shows the decrease in EEG complexity at mostly anterior
cortex in the 1st group characterized by maladaptive rumination. In conclusion,
FSC can be proposed to investigate cognitive dysfunctions often caused by the
use of rumination.
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1. Introduction

The recent attractive research studies combines computer science aspects
with cognitive neuroscience [1, 2, 3, 4]. This bridge provides new opportunities
in order to develop decision-making systems with artificial intelligence models
in both medical and social sciences. Quantitative neuromarkers/indicators have
been estimated from brain waves measured as Electro-Encephalo-Graphy (EEG)
series according to several goals such as decoding the instant thoughts of disabled
people about the action they need [6, 7, 8], recognizing an emotional state
[9, 10, 11], investigating attentive decision-making skills [12, 13], measuring
psychiatric well-being [14, 15, 5].

The motivation of the present study is to propose a new metric, Frequency
Specific Complexity (FSC) for classification of two contrasting cognitive groups
consisting of people who use a negative emotion regulation strategy (ERS), ru-
mination frequently and those who rarely use it. FSC is defined as averaged
neuronal complexity in Alpha (8− 12 Hz) and Beta (12.5− 30 Hz) frequency
bands of short EEG segments at resting-state. Approximate Entropy (AE) and
Wavelet Entropy (WE) have been examined to estimate neural complexity lev-
els in both eyes-closed (EC) and eyes-opened (EO) states and then the resulting
FSC values are classified by using machine learning models with respect to cor-
tical regions. EEG data is downloaded from a publicly available database called
LEMON described in reference [23]. The groups are organized in accordance
with the individuals’ scores on Cognitive Emotion Regulation Questionnaire
(CERQ).

EEG recordings provide prompt and objective information in extracting
meaningful and accurate markers/indicators about both cognitive process and
emotional states as well as mood [16, 17]. ERS refers the ability to control
both formation and behavioral responses of emotions according to one’s lo-
cation and time. Behavioral and cognitive managements can be referred as
control of anxiety, reducing the stress, handling difficult emotions, etc... Thus,
emotion management skills referring which ERS is used frequently, plays an
important role in every field of life [18]. Association of different cognitive ERS
with brain activities has become an attracting research topic in recent years.
In detail, the main two opposite categories of CERS are rumination and dis-
traction [19]: Rumination is an emotion-oriented regulation strategy meaning
to focus on depressive behaviors and thoughts, thereby increasing the negative
effects of depressive symptoms. On the contrary, distraction is a strategy that
directs one’s attention to pleasant thoughts and actions that can distract from
the negative subject in order to get away from the depressive mood [20, 21].
Even if neuroimaging modalities have been examined in estimating differences
among CERs in response to emotional stimuli [22], no study has been published
on cross-correlation between spontaneous neuro-cortical complexities and con-
trasting CERs to date. In the present study, it is the first time to estimate local
complexity levels from resting state EEG recordings to discriminate maladaptive
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ruminative thoughts in healthy adults. In order words, two contrasting cognitive
skills (positive and negative ERSs, i.e. rarely and frequently use of rumination)
are indicated by FSC levels in both EC and EO states in order to investigate
the impact of ruminative thoughts on spontaneous postsynaptic potentials em-
bedded in resting-state EEG recordings, since the case of open and closed eyes
in decoding cognitive deficits depending on the presence of psychiatric disorders
[24, 25, 27].

Moderate neuro-functional abnormalities can be detected through EEG anal-
ysis, since this modality provides to observe and store superimposed electro-
chemical current contributions from all synchronized neurons within a volume of
brain tissue (i.e. near to electrode placement). Comparing neuro-imaging meth-
ods, extraction of quantitative markers from EEG measurements provide supe-
rior diagnostic tools to the neuroscientist due to its temporal resolution yield rel-
evant information about electrical activities of local neuronal networks [28, 29].
Depending on experimental paradigm, domain specific different non-linear meth-
ods have been applied to EEG recordings in recognizing of neuro-developmental
(Autism Spectrum Disorder) [30], and neuro-degenerative (Alzheimer’s disease)
[31] even estimate neurological dysfunctions such as epilepsy [32, 33] and seizure
[34, 35]. In diagnosis, the severity of disease is another and secondary target
of smart classifiers. Different from clinical applications, other crucial goal of
advanced EEG classification is to understand higher-order brain functions such
as attention [36], and consciousness [37, 38].

FSC has been defined as mean neural complexity associated with alpha (8−
12 Hz) and beta (12.5 − 30 Hz) sub-bands of resting-state EEG segments for
detection of cognitive skills in the present study. Approximate Entropy (AE)
and Wavelet Entropy (WE) are compared to each other to obtain frequency-
band specific entropies of stimulus-free EEG recordings in eyes-opened and eyes-
closed states in two contrasting groups including frequently and rarely use of
rumination and distraction in adults (women and men together). Due to non-
linear, non-periodic and non-deterministic nature of EEG series, the primary
step of the propose method is to apply well-arranged finite-impulse-response
(FIR) filters to non-overlapped short EEG segments of 2 sec in order to extract
alpha and beta sub-bands in both EO and EC states.

AE is the mostly examined embedding entropy approach in diagnostic EEG
analysis [48, 49]. WE has been mostly used to decompose the signal into fre-
quency components in brain-computer interfaces driven by evoked brain waves
in response to an external stimuli [50]. To compute WE, discrete or continuous
Wavelet Transform (WT) have to be applied to signal segments. Continuous
WT was found to be sensitive to phase correlation of two cortical regions in
neurological diseases such as non-convulsive epileptic seizure [32] and Obsessive
Compulsive Disorder [51]. Discrete WT has been applied to not only ongo-
ing spontaneous EEG but also evoked brain potentials in response to external
stimuli with many different goals such as seizure detection [52], noise reduction
[53], anesthesia monitoring [54], and, emotion recognition [55]. Different from
these papers, average power of WT coefficients associated with alpha and beta
sub-bands, reveals the correlation between wavelet energies and individual per-
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sonality differences in attentional breadth [56]. In the present study, Discrete
WT is applied to alpha and beta sub-bands at a single scale where the partic-
ular EEG sub-bands are extracted from pre-processed short segments (applied
Notch filter) by using well-oriented FIR filters.

In both clinical applications and neuro-cognitive research, alpha sub-band
has provided meaningful indicators in analysis of resting-state EEG recordings in
EO and EC states [39]. In more recent studies, both alpha and beta sub-bands
have been found to be functional significance with attentional and inhibitory
processes in both EC and EO states [108]. Many other research studies have
showed that controls can be discriminated from psychiatric disorders such as
depression, bipolar, schizophrenia in alpha and beta sub-bands of resting-state
EEG in EO [41]. Therefore, alpha and beta sub-band specific entropies are
averaged to define FSC in resting-state EEG analysis in the present study.

The usefulness of the proposed cognitive neuro-markers has been tested by
using machine learning models driven by five features sets including EEG com-
plexity estimations from the whole cortex and cortical regions (anterio-frontal,
central, temporal, parieto-occipital) in classifying two groups having contrast-
ing CERs. Feature extraction and compatible intelligent classification of the
features are common and unavoidable steps in both computational and be-
havioural neuroscience. Embedding entropy concept has been commonly found
to be sensitive to quantitative EEG complexity originated from superimposed
post-synaptic potentials at a small neural population in particular symptoms of
consciousness disorders [42, 43], cortical lesions [44] and sleep cycles [45] in fea-
ture extraction step. Entropy based various algorithms have also been applied
to EEG recordings in response to affective stimuli for recognition of emotional
states [46, 47].

Considering the EEG classification step, the most popular machine learn-
ing model is Support Vector Machine (SVM) in extracting quantitative markers
from EEG recordings due to its theoretical capability in implicitly detecting
complex non-linear interactions between dependent and independent variables
[57, 58, 59]. Besides, the performance of SVMs are frequently compared with
non-linear and non-parametric classifiers called k-Nearest Neighbors (kNNs) in
brain research [60, 61]. In epileptic seizure detection, k-NN has also be com-
pared with Gaussian Naive Bayes (GNB) that is a probabilistic classifier based
on Bayesian theory with assumptions of each feature of a particular class is in-
dependent of any other feature and the likelihoods are Gaussian [62]. Different
from SVMs and kNNs, LR is statistical learning model described as pattern rec-
ognizer in several studies focused on different goals such as automated detection
of epileptic waveforms [67, 68] and emotion recognition [69] as well as investi-
gation of healthy motor task responses [70]. In recent brain-computer-interface
applications, classification performances of both SVM and LR have been com-
pared to Multi Layer Perceptron (MLP) using gradient descent in training with
the gradients calculated using Backpropagation [71]. MLP has also been used
for classification of sleep and wakeful states identified by EEG features [72].
Conceptually, SVM and kNN differ from LR in offering multiple training algo-
rithms for classification of electrophysiological features [73]. Commonly GNB
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and MLP are generally found to be useful in small feature set [72, 62]. In
the present study, those popular five machine learning models have been used
for discrimination of cognitive ER management capabilities in adults and then
their performances are compared to each other with respect to neuro-cortical
complexity features, i.e. FSC estimations.

The novelty of the present study is to propose a new EEG based local
complexity indicator for fast and robust detection of negative emotion regula-
tion strategy so called maladaptive rumination from resting-state surface EEG
recordings. Both robustness and reliability of the proposed method, Frequency
Specific Complexity, have been satisfied by using seven different Machine Learn-
ing models with 5-fold cross validation for classification of adults who use con-
trasting cognitive ERS. The findings provide to understand neural mechanism
underlying repetitive negative thoughts triggered by depressive feelings. Since
the best performance has been provided by the largest feature set including FSC
estimations across the whole cortex, the results are found to be meaningful and
consistent with cognitive neuroscience hypotheses, as rumination requires both
cognitive and emotional subprocesses associated with the activation of multiple
and diverse brain regions responsible for attention, self-referential processing,
and recall of autobiographical memories [63].

2. Methods

2.1. The Participants

Surface EEG measurements and the psychometric test scores of the par-
ticipants were obtained from an internationally validated, accessible database,
LEMON introduced in reference [23]. In collecting data, primary step was to
complement cognitive test batteries lasting about 4 hours of duration each at
first day. Resting-state EEG series were recorded from participants who com-
pleted Cognitive Emotion Regulation Questionnaire (CEQR) at second day. As
well, psychiatric interview was done by experts with the participants to decide
the healthy status of them. So, hypertensive patients and those with cardiology
and neurological diseases are not included.

Raw data was analysed in the present study. 62-channel EEG measurements
were categorized according to CEQR scores of the individuals. CERQ measures
how often individuals use rumination (I) and cognitive distraction (II) strategies,
with sub-scales of rumination and positive refocusing into 36 questions on a 5-
point Likert scale (1 refers ’almost never’ to 5 refers ’almost always’) [74].

Group-1 included the individuals use both strategies I and II frequently (13
women, 7 men), while Group-2 included the individuals rarely use any of the
strategies I and II (6 women, 14 men). In detail, the individuals (aged between
20 to 65) scaled high rumination tendencies as well as high distraction ten-
dencies of CERQ with respect to mean (5.40) and std (2.62) values in Group-1,
while the individuals scaled low rumination tendencies as well as low distraction
tendencies of CERQ scores with respect to mean (4.90) and std (2.58) values in
Group-2. The quantitative scales were determined by adding and subtracting
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Figure 1: Schematic representation of group categorization depending on individuals’ re-
sponse to CERQ where HR (High-Rumination) refers frequently use of rumination, LR (Low-
Rumination) refers rarely use of rumination, HD (High-Distraction) refers frequently use of
distraction, LD (Low-Distraction) refers rarely use of distraction

half of standard-deviation to the mean value among all individuals. Schematic
representation of this categorization is presented in Figure 1.

2.2. EEG Data Acquisition and Pre-processing

Brain Products ActiCaps (GmbH, Gilching, Germany) was used to measure
62-channel surface EEG series from scalp surface of the awake volunteers who
were not assigned any task and sat in a comfortable chair in a resting-state.
Multi-channel recordings (61 scalp electrodes in addition to VEOG below the
right eye) were stored into 16 blocks (8 blocks in eyes-opened (EO) and 8 blocks
in eyes-closed (EC) states). These recording blocks were organized with pre-
sentation software (Neuro-behavioural Systems Inc., Ver16.5, Berkeley, USA).
In order to ensure the state of EO or EC, the participants looked at computer
screen (black cross presented on a white background). The length of each bloc
was 60 sec.

EEG recording electrodes were placed on scalp with respect to the interna-
tional 10–20 extended electrode placement system where the reference electrode
was linked to FCz and the ground was located at the sternum. The amplitude
resolution was 0.1 µV olt. Electrode impedance was kept below 5 kΩ. EEG data
was digitized with the sampling frequency of 2500 Hz, however, down-sampling
was applied to the data with 250 Hz. The down-sampled raw data was firstly
extracted from the data-base through a Pyhton code given as Appendix. During
extraction of the raw data, 16 data blocks, interleaved to each other in a single
file, were separated for each individual. Then, the physiological artifacts were
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removed from raw data, i.e. unprocessed EEG data recordings data as proposed
in the reference study [65] according to the known frequency components (lower
than 4 Hz) of the artifacts originated from eye blinks [64]. EEG filtering and
analysis were performed in MATLAB2021Ra by using three main toolboxes as
Signal Processing Toolbox, Statistics and Machine Learning Toolbox.

Figure 2 shows the schematic representation of EEG analysis. For each par-
ticipant in each group, network noise at 60Hz was removed from non-overlapped
consecutive short EEG segments of 2 sec through an Infinite-Impulse-Response
(IIR) filter with order of 35 (Notch filtering). The corresponding specifications
of this filter were optimized as described in reference [66].

3. Frequency Specific Complexity

Frequency Specific Complexity (FSC) has been estimated from pre-filtered
short EEG segments across 62-channel recordings in both EO and EC states in
groups. A finite-impulse-response (FIR) filter was applied to EEG segments,
filtered by IIR, to extract frequency band intervals. Regarding optimized FIR
filter specifications, the filter order was 35 with the density factor of 20 where
the bandwidth (BW) was wo/354 (wo=60/Fs/2). The sub-band ripples were
0.05750 and, stop-band attenuation was 0.0001. The frequency intervals were
8−12 Hz and 12.5−30 Hz in extracting alpha and beta sub-bands, respectively.

Considering frequency sub-band of EEG segment (s) is denoted by xsub−band =
[x(1)x(2)...x(N)], Approximate Entropy (AE) is defined in form,

AEx = ϕm(r)− ϕm+1(r) (1)

where ϕm(r) = mean(ln (Cm
r (i))). A sliding window with length of an em-

bedding dimension of m, is applied to the sequence of xsub−band in order to con-
sider statistical variations throughout the sequence within a tolerance r based
on logarithmic likelihood [75, 76].

C(x) =
1

N −m

N−m∑
i=1

L(i) (2)

Here, L(i) = number of d[xm+1(i), xm+1(j)] ≤ r. The small tolerance level
can be considered as noise threshold in a random process. In applications this
threshold is predefined as r = 0.25std(x). The useful embedding dimension, m
is estimated by calculating the false nearest neighbor as described in reference
[78]. AE is computed for both alpha and beta sub-bands by using equation 1
and then, mean value of these estimations is defined as FSC in form,

FSCs =
AEalpha +AEbeta

2
(3)

Wavelet Entropy (WE) is introduced as a complexity measure [79]. WE is
applied to frequency sub-bands of short EEG segments for estimation of the
degree of randomness in specified sub-bands in form,
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Figure 2: Algorithmic steps in EEG analysis before applying EEG complexity metrics to short
EEG segments
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WE = −
∑

pj ln (pj) (4)

where pj refers probability distribution that can be considered as a time-scale
density. In estimating WE, pj is given by,

pj =
Ej

Et
(5)

Here, Ej and Et denote relative and total wavelet energies that are extracted
from Discrete Wavelet Transform (DWT) coefficients as introduced in [79]. The
corresponding wavelet coefficients are assumed to be local residual errors be-
tween successive signal approximations at scales j and j + 1. In the present
study, j is set to 1, since WE is computed for frequency sub-bands of short
EEG segments. In examining DWT, Daubechies-5 (db− 5) is chosen as Mother
Wavelet function due to their non-symmetric, orthogonal and compact support
nature similar to resting-state short EEG recordings [80, 82]. The reference
paper presents a detailed review on the studies that apply WE to EEG record-
ings in mental disorders [81]. In the present study, WE is computed for both
alpha and beta sub-bands by using equation 1 and then, mean value of these
estimations is defined as FSC in form,

FSCs =
WEalpha +WEbeta

2
(6)

3.1. Classification of Groups

Five different supervised machine learning methods as Logistic Regression
(LR), Support Vector Machine (SVM), k-Nearest Neighbours (kNN), Gaussian
Naive Bayes (GNB), Multi Layer Perceptron (MLP) and two Extreme Learning
Machine (ELM) models as single-layer ELM and Class-specific cost regulation
ELM (CCR-ELM) were used for classification of two balanced groups with re-
spect to five particular feature sets as follows:

� SET-1 includes FSC levels extracted from 62-channel recording sites

� SET-2 includes FSC levels extracted from anterio-frontal recording sites
(Fp1, Fp2, AF3, AF4, AF7, AF8, F1, F2, F3, F4, F5, F6, F7, F8)

� SET-3 includes FSC levels extracted from central sites (FC1, FC2, FC3,
FC4, FC5, FC6, C1, C2, C3, C4, C5, C6, CP1, CP2, CP3, CP4, CP5,
CP6),

� SET-4 includes FSC levels extracted from temporal sites (FT7, FT8, T7,
T8, TP7, TP8)

� SET-5 includes FSC levels extracted from parieto-occipital sites (P1, P2,
P3, P4, P5, P6, P7, P8, O1, O2, PO3, PO4, PO7, PO8, PO9, PO10)
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Group-1 and Group-2 were labeled by 0 and 1, respectively in two-class
binary classification steps. The feature sets were obtained in both EO and EC
states, separately. The features were extracted from the raw data. In both
EO and EC states, 8 blocks in EEG recordings of 60 sec were analysed for
each participant. Data was segmented through a constant sliding window of
2 sec in each block. Therefore, the total number of features is 297.600 (62
(recording channels) x 8 (blocks) x 30 (segments) x 40 (subjects) = 595.200) in
the largest feature set. The number of features was identical in groups according
to cortical regions identified by particular feature sets above. Thus, the groups
were balanced in classification step.

Scikit-Learn Machine Learning Library was used to implement the classi-
fiers with 5-fold Cross-Validation in Python3.7.12. In detail, the kernels were
chosen as Radial Basis Functions in examining of SVMs according to the sugges-
tions in medical applications [84]. ELM was implemented with multiple layers
of hidden nodes having the parameters need not be tuned [83]. In addition,
CCR-ELM was also implemented for two-class classification due to its reported
superiority to ELM [112, 113]. The configuration parameters were optimized by
using Adaptive Moment Estimation Method (Adam) in MLP. The Grid-Search
method was used to find the optimum parameters in both conventional ELM
and CCR-ELM algorithms of single-hidden layer feed-forward neural networks
with sigmoidal activation function. The optimum variables were determined by
using Grid-Search method in another machine learning models, as well. Com-
monly, the well known performance metrics called as Classification Accuracy
(CA), Area-Under-Curve (AUC), F1-score and G-mean were computed in ap-
plications. The reference study presents the mathematical definitions of these
error criteria [85].

4. Related Works

In cognitive neuroscience, the maladaptive and detrimental consequences of
focus on depressed mood have been frequently studied in order to show the
association of negative self-focus with depression [87, 88, 89]. Several stud-
ies provided the evidence suggesting that rumination tendency is associated
with self-reported generalized anxiety symptoms [92] and post-traumatic stress
[93]. Thus, rumination has been considered as an important etiological vari-
able of depression [90], however, the later study defines the rumination with a
vital trans-diagnostic factor in emotional disorders [91]. Therefore, the com-
mon goal of the most of the related research studies is to discuss the role of
impaired working memory on rumination-related cognitive mechanisms accord-
ing to EEG [96, 95, 97, 98]. A few studies has been presented to relate f-NIRs
indicators with rumination in response to go/no go task driven by emotional
stimuli [99]. Besides, EEG neuro-feedback protocol has also been proposed to
treat depression and rumination in more recent studies [94].

Ruminations can be defined as repetitive thoughts associated with conse-
quences of one’s negative/depressive feelings. The present study examines FSC
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levels of neuronal populations over scalp in maladaptive rumination at resting-
state in order to show the relations between spontaneous neurotransmitter ac-
tivities embedded in surface EEG measurements with resting-state maladaptive
rumination without any task and/or stimulus. So, default-mode brain functions
are analyzed with respect to cortical regions. For this purpose, AE and WE are
used to compute FSC in frequency band intervals of both EO and EC states in
two groups having the identical number of EEG features. The balanced groups
were classified with machine learning models.

5. Results

Two groups were classified with respect to features sets including FSC es-
timations and the resulting classification performance metrics were listed in
tables. In accordance with the use of WE in computing FSC values from resting-
state EEG segments at EO and EC states in Tables 1 and 2, respectively. Tables
3 and 4 included the classification performances of the classifiers with respect
to feature sets obtained through use of AE in EO and EC states, respectively.

Regarding both Tables 1 and 2, useful CA was provided by SVMs driven by
SET1 in both EO and EC states, while none of the other feature sets provided
high classification performance (higher than CA of 85%) in any case (EC, EO).

Regarding both Tables 3 and 4, the classifiers produced the perfect per-
formance (CA higher than 90%) in both EO and EC states when SET-1 was
considered. Besides, four classifiers (SVM, kNN, ELM, CCR-ELM) provided
high CA in both states in considering both SET-2 and SET-3. In detail, kNN
and SVM both provided high classification performance in examining each fea-
ture set in EC state, while the highest CA of 99.47% was provided by CCR-ELM
in examining SET-1 in EC state.

Since, using AE in computing FSC provided clearly better classification of
two-groups at both states (EC, EO), the statistical box plots of AE driven
FSC estimations were shown as follow: Figures 3 and 5 showed distribution of
FSC values in Group-1 at EO and EC states, respectively, while Figures 4 and 6
showed distribution of FSC values in Group-2 at EO and EC states, respectively.
Commonly, white boxes refer the left recording channels, black filled boxes refer
the corresponding right recording channels, the circulus refer the outliers in
those figures. Comparing these figures to each other, the relatively lower EEG
complexity levels were produced by Group-1 in both states (EO and EC). In
both groups, EEG complexity levels were decreased at EC state.

Between two groups, statistically meaningful and significant differences were
obtained by using statistical permutation test as listed in Table 5. Regard-
ing FSC estimations with AE, significant statistical differences between groups
were stated at mostly frontal, centro-parietal and parietal locations in both EO
and EC states, however, the more electrode placements provided statistically
meaningful differences in EO state. The statistical p-values were converted into
colored relative scales according to 62-channel EEG electrode placement coor-
dinates as shown in Figure 7.
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Table 1: Classification performance results in accordance with FSC estimations with WE at
EO state

Features Classifier CA AUC F1- score G-mean

SET-1

SVM 90.62 90.64 90.63 82.15
kNN 84.89 84.84 85.57 71.87
GNB 61.71 62.72 48.78 31.75
LR 77.60 77.65 77.95 60.28
MLP 83.59 83.60 83.72 69.87
ELM 86.19 85.96 84.48 73.47
CC-ELM 80.98 81.13 81.14 65.73

SET-2

SVM 82.55 82.67 78.40 62.22
kNN 78.90 78.88 81.34 67.74
GNB 55.72 55.22 81.34 67.74
LR 61.97 61.91 59.89 38.15
MLP 70.05 69.86 72.29 48.47
ELM 73.95 74.01 72.68 54.48
CC-ELM 70.83 70.79 72.14 49.96

SET-3

SVM 76.30 75.91 72.67 56.53
kNN 73.95 73.77 71.75 54.16
GNB 64.58 63.43 78.50 64.69
LR 68.75 68.36 64.07 45.63
MLP 72.13 71.91 69.52 51.36
ELM 81.25 81.66 80.54 66.06
CC-ELM 75.26 75.37 73.68 56.30

SET-4

SVM 69.79 70.19 67.60 46.65
kNN 67.70 67.46 67.20 47.83
GNB 54.68 53.96 59.15 40.24
LR 53.38 53.18 54.45 31.52
DNN 57.55 57.35 59.95 37.65
ELM 71.87 71.81 73.13 51.45
CC-ELM 70.31 70.03 72.73 48.88

SET-5

SVM 69.53 69.21 65.69 47.15
kNN 77.08 76.99 75.82 59.23
GNB 58.07 56.84 82.08 69.43
LR 63.02 62.34 63.61 45.48
MLP 63.02 62.95 57.49 38.02
ELM 72.39 72.35 70.88 52.34
CC-ELM 73.17 72.39 68.31 51.55
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Table 2: Classification performance results in accordance with FSC estimations with WE at
EC state

Classifier CA AUC F1- score G-mean

SET-1

SVM 89.32 89.14 88.39 79.31
kNN 88.54 88.52 88.83 78.35
GNB 63.28 61.97 50.18 33.24
LR 78.12 78.02 76.67 60.84
MLP 87.23 87.27 86.72 76.16
ELM 78.90 78.92 79.28 62.29
CC-ELM 83.59 83.64 83.46 69.90

SET-2

SVM 77.60 77.64 77.49 60.26
kNN 77.34 77.11 74.64 58.72
GNB 54.68 53.86 80.33 66.13
LR 60.93 60.46 64.09 45.44
MLP 65.36 65.23 63.16 42.42
ELM 76.56 76.70 76.06 58.63
CC-ELM 74.21 74.28 72.73 54.79

SET-3

SVM 83.85 83.81 82.29 69.53
kNN 80.98 80.96 80.11 65.40
GNB 59.37 59.22 76.08 60.52
LR 69.01 68.93 63.61 45.42
MLP 75.52 76.14 75.00 57.34
ELM 75.52 75.55 74.87 56.97
CC-ELM 83.33 83.20 82.12 69.17

SET-4

SVM 71.87 71.54 75.45 49.57
kNN 71.35 71.35 71.94 50.92
GNB 53.90 54.86 80.00 64.76
LR 57.81 58.48 69.44 50.57
MLP 63.28 62.95 60.18 41.38
ELM 71.09 71.35 50.81 71.90
CC-ELM 77.34 77.43 76.29 59.94

SET-5

SVM 80.20 80.20 80.10 64.33
kNN 78.38 78.38 78.33 61.44
GNB 60.41 60.25 79.88 66.15
LR 65.10 65.04 60.82 41.19
MLP 71.35 71.38 72.91 50.59
ELM 67.18 67.34 64.00 44.37
CC-ELM 76.56 76.57 77.04 58.58
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Table 3: Classification performance results with respect to FSC estimations with AE at EO
state

Classifier CA AUC F1- score G-mean

SET-1

SVM 96.35 96.27 95.95 92.67
k-NN 98.17 98.17 95.95 92.67
GNB 64.58 64.81 58.78 59.74
LR 90.88 90.87 91.09 82.56
MLP 91.92 91.92 92.19 84.50
ELM 97.65 97.70 97.60 95.52
CC-ELM 97.13 97.11 96.95 94.30

SET-2

SVM 92.18 92.41 92.23 85.21
kNN 94.53 94.80 94.52 89.60
GNB 68.22 68.22 62.71 43.22
LR 71.61 71.61 70.14 51.04
MLP 90.36 90.32 91.00 81.70
ELM 90.36 90.36 90.29 81.66
CC-ELM 91.40 91.45 90.96 83.63

SET-3

SVM 95.31 95.35 95.54 90.93
kNN 94.79 94.90 95.00 90.03
GNB 60.67 61.87 65.33 46.00
LR 71.61 71.48 73.35 51.06
MLP 80.98 81.03 80.43 65.66
ELM 97.39 97.37 97.30 94.82
CC-ELM 91.92 91.91 91.73 84.47

SET-4

SVM 84.63 84.65 84.68 71,65
kNN 84.89 84.90 85.05 72,08
GNB 56.77 56.95 59.28 37,74
LR 55.46 55.53 53.91 30,66
MLP 65.10 64.89 68.69 41,09
ELM 82.55 82.51 81.34 68.09
CC-ELM 73.43 73.45 73.44 53.94

SET-5

SVM 92.70 92.52 92.05 85.49
kNN 95.57 95.52 95.29 91.23
GNB 65.88 65.15 58.68 40.47
LR 71.61 71.19 67.85 50.05
MLP 66.92 66.30 60.92 42.55
ELM 90.62 90.66 90.32 82.04
CC-ELM 79.68 79.60 78.45 63.20

14



Table 4: Classification performance results with respect to FSC estimations with AE at EC
state

Classifier CA AUC F1- score G-mean

SET-1

SVM 97.39 97.37 97.31 94.80
kNN 97.91 97.88 97.83 95.78
GNB 65.36 66.55 75.25 59.59
LR 90.62 90.65 90.86 82.17
MLP 93.48 93.38 93.03 87.13
ELM 98.17 98.12 98.25 96.26
CC-ELM 99.47 99.44 99.44 98.88

SET-2

SVM 95.83 95.83 95.94 91.83
kNN 97.13 97.12 97.22 94.33
GNB 57.03 57.76 68.13 48.50
LR 68.22 68.33 68.06 46.61
MLP 75.00 75.04 74.05 56.12
ELM 93.48 93.33 94.00 87.06
CC-ELM 87.76 87.78 87.53 76.99

SET-3

SVM 96.35 96.39 96.20 92.92
kNN 96.61 96.59 96.42 93.30
GNB 72.13 71.69 68.25 50.67
LR 82.55 82.54 81.74 68.14
MLP 84.89 84.52 82.94 71.25
ELM 96.09 96.09 96.22 92.35
CC-ELM 94.27 94.37 94.30 88.99

SET-4

SVM 88.28 88.29 88.43 77.92
kNN 86.97 86.98 87.18 75.63
GNB 63.02 63.09 67.28 38.02
LR 63.80 63.82 65.16 40.56
MLP 67.44 66.91 71.40 43.71
ELM 82.29 82.30 82.29 67.73
CC-ELM 77.60 77.13 80.00 59.15

SET-5

SVM 91.40 91.61 91.47 83.77
kNN 92.96 93.09 93.13 86.61
GNB 60.93 61.67 60.23 39.79
LR 67.96 68.43 66.12 46.02
MLP 80.20 80.15 78.89 63.95
ELM 84.37 84.62 71.42 84.46
CC-ELM 84.11 83.84 82.42 69.98
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Figure 3: Statistical box plots of FSC estimations with AE in EO state in Group-1

Figure 4: Statistical box plots of FSC estimations with AE in EO state in Group-2
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Figure 5: Statistical box plots of FSC estimations with AE in EC state in Group-1

Figure 6: Statistical box plots of FSC estimations with AE in EC state in Group-2
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Table 5: Statistical p-values between groups in both EC and EO states in accordance with
FSC estimations with AE (statistically meaningful level is p < 0.05)

channel EC EO channel EC EO
Fp1 0.079 0.085 PO10 0.043∗ 0.011∗

Fp2 0.090 0.092 AF7 0.058 0.071
F7 0.068 0.0009∗ AF3 0.084 0.070
F3 0.085 0.005∗ AF4 0.063 0.091
Fz 0.016∗ 0.047∗ AF8 0.024∗ 0.070
F4 0.096 0.038∗ F5 0.087 0.087
F8 0.009∗ 0.034∗ F1 0.052 0.015∗

FC5 0.097 0.048∗ F2 0.060 0.051
FC1 0.026∗ 0.077 F6 0.024∗ 0.054
FC2 0.001∗ 0.001∗ FT7 0.025∗ 0.056
FC6 0.061 0.074 FC3 0.022∗ 0.011∗

T7 0.072 0.050 FC4 0.003∗ 0.005∗

C3 0.016∗ 0.004∗ FT8 0.090 0.090
Cz 0.009∗ 0.057 C5 0.074 0.030∗

Veog 0.001∗ 0.002∗ C1 0.016∗ 0.008∗

C4 0.040∗ 0.029∗ C2 0.085 0.024∗

T8 0.075 0.008∗ C6 0.066 0.012∗

CP5 0.036∗ 0.006∗ TP7 0.043∗ 0.091
CP1 0.0002∗ 0.005∗ CP3 0.029∗ 0.061
CP2 0.0009∗ 0.015∗ CPz 0.022∗ 0.010∗

CP6 0.005∗ 0.038∗ CP4 0.087 0.030∗

Afz 0.099 0.057 TP8 0.030∗ 0.076
P7 0.079 0.006∗ P5 0.046 0.0044∗

P3 0.016∗ 0.019∗ P1 0.046 0.036∗

Pz 0.040∗ 0.015∗ P2 0.018∗ 0.029∗

P4 0.003∗ 0.009∗ P6 0.043∗ 0.024∗

P8 0.069 0.014∗ PO7 0.079 0.035∗

PO9 0.083 0.075 PO3 0.081 0.011∗

O1 0.092 0.065 POz 0.054 0.002∗

Oz 0.035∗ 0.071 PO4 0.050 0.037∗

O2 0.030∗ 0.010∗ PO8 0.001∗ 0.054
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Figure 7: Cortical difference maps between the groups in EO (a) and EC (b) states (colour
bar is correlated with 0.1x(p-values))

6. Conclusion and Discussion

In the present study, a new indicator so called FSC has been proposed for
classification of maladaptive rumination in resting-state, since electrophysio-
logical findings commonly reveal close relations between mental disorders and
neuro-functional network across the whole cortex even in the resting state
[100, 101, 102]. Usefulness of WE and AE in computing frequency band specific
EEG complexity is tested for estimation of accurate FSC. Then, the reliability
of FSC is tested by examining supervised machine learning models and extreme
learning machines for detection of maladaptive rumination from resting-state
EEG recordings. In addition, statistical differences between the groups are
computed through one-way Anova tests according to the corresponding best
results.

AE provided considerable better estimations in comparison to WE due to
nonlinear nature of EEG segments. AE is a nonlinear statistical quantity of
signal irregularity such that its performance depends on the largeness of time-
series. Comparison of AE with WE has been studied in EEG analysis with
several goals such as detection of driving fatigue [103, 104] and seizure [105].

Alpha and Beta sub-band specific complexity estimations are averaged to
provide FSC in resting-state, since EEG analysis has frequently focused on Al-
pha and Beta sub-bands for estimation of cognitive skills in resting-state in both
past and recent studies [106, 107, 108, 109]. Multi-channel FSC estimations are
considered as separate instants (i.e. features) in two-class classification steps.
Dimension of the features is identical to the number recording channels that are
included in regional features such SET-2, SET-3, SET-4 and SET-5. So, the
largest feature set is SET-1 including FSC values estimated from 62-channels
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over a 1 min duration trial divided into short segments of 2 sec according to 20
individuals in each group. As the number of recording channels increases, both
dimension and number of the features also increases in feature sets. Therefore,
the best classification performance is obtained through 5-fold cross validated
CCR-ELM driven by the largest feature set including FSC values estimated
with AE at EC state. In addition to higher CA, CCR-ELM is also faster than
the other machine learning models. It can be stated that the classification per-
formance is decreased as the number of features is decreased, however, FSC
values estimated with AE are able to detect neuro-functional complexity differ-
ences originated from maladaptive rumination at both states (EC, EO) in each
feature set classified by any classifier except GNB. In reference study, GNB was
reported as less successful than both SVM and k-NN [84].

In conclusion, the results reveal that maladaptive rumination is highly rel-
evant to FSC estimations (averaged EEG complexity with AE in Alpha and
Beta sub-bands of short EEG segments) at mostly EC state at mostly frontal,
centro-parietal and parietal locations. In detail, FSC values are decreased in
maladaptive ruminations characterized by repetitive thoughts associated with
negative feelings. In literature, the left frontal cortex is assumed to be responsi-
ble for management of arousal and regulation of stress response, while the right
frontal cortex was reported to manage the fight or flight response [86]. How-
ever, the current results prove that the whole cortex is more or less affected by
cognitive abilities in management of negative emotions. Since, the people with
a high tendency to rumination have low ability to manage negative emotions,
it is the important issue to correlate maladaptive rumination with resting-state
EEG based quantitative indicators.

Since, frequently use of negative ERS called rumination induces deficits in
cognitive functioning, the most important hallmark symptoms of major depres-
sion disorder, wherein individuals retrieve and repetitively rehearse autobio-
graphical and negatively valance content about both past and current issues
[110, 111]. Moreover, persons who use frequently rumination in daily life, have
trouble with sustained attention. Thus, maladaptive rumination is one of the
most problematic cognitive symptoms in adults. The present study propose a
new quantitative tool to understand the neural mechanism underlying repetitive
negative thoughts triggered by depressive feelings.
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