Following hybridization on sensor/array platforms by using SPR, elipsometer and MALDI-MS


ÇELİKBIÇAK Ö., HAMALOĞLU K. Ö., SALİH B., Piskin E.

NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS, vol.39, no.7, pp.1057-1072, 2020 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 39 Issue: 7
  • Publication Date: 2020
  • Doi Number: 10.1080/15257770.2020.1750635
  • Journal Name: NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Chimica, EMBASE, MEDLINE
  • Page Numbers: pp.1057-1072
  • Hacettepe University Affiliated: Yes

Abstract

The aim of this study is to develop a methodology in which Surface Plasmon Resonance (SPR), Ellipsometer (EM) and Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-MS) will be used together for detection of single-strand oligodeoxynucleotides (ssODNs) targets. A selected target-ssODNs, and its complementary, the probe-ssODNs carrying a -SH end group, a spacer arm (HS-(CH2)(6)-(T)(15), and a non-complementary ssODNs were used. Silicone based stamps with 16 regions were prepared and used for micro-contact printing (mu CP) of the probe-ssODNs on the gold coated surfaces homogeneously. A modulator-spacer molecule (6-mercapto-1-hexanol) was co-immobilized to control surface probe density, to orientate the probe-ssODNs, and to eliminate the nonspecific interactions. SPR was used successfully to follow the hybridization of the target-ssODNs with the immobilized probe-ssODNs on the platform surfaces. Complete hybridizations were achieved in 100 min. It was obtained that there was a linear relationship between relative change in delta and target concentration below 1 mu m. Using imaging version of ellipsometer (IEM) allowed imaging of the surfaces and supported extra datum for the SPR results. After a very simple dehybridization protocol, MALDI-MS analysis allowed detection of the target-ssODNs hybridized on the sensor/array platforms.