Effect of gamma irradiation on the properties of tyre cords


Creative Commons License

Aytaç A., Şen M., Deniz V., Guven O.

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, vol.265, pp.271-275, 2007 (SCI-Expanded) identifier identifier

Abstract

Gamma irradiation of high tenacity Nylon 6.6 (Ny 66) and polyester (PET) tyre cords was investigated. The untreated and treated tyre cords with different twist levels were irradiated at different dose rates in air. The effects of irradiation on both Ny 66 and PET cords were not found to be depending on the twist levels of the cords. The changes in the mechanical and thermal properties with absorbed dose at two different dose rates were measured. The mechanical properties were observed to deteriorate with increasing dose for Ny 66 cords, whereas remained almost unchanged for PET cords both in greige and dipped forms. Hot shrinkage value for the greige Ny 66 cords was found to be improved, i.e. decreased. This decrease was much lower for greige PET than Ny 66 cords. It is concluded that PET cord has higher radiation resistance than Ny 66 cord and the effects of high energy irradiation on tyre cords have to be taken into consideration during tyre design if pre-vulcanization with high energy radiation is to be applied.

Gamma irradiation of high tenacity Nylon 6.6 (Ny 66) and polyester (PET) tyre cords was investigated. The untreated and treated tyre cords with different twist levels were irradiated at different dose rates in air. The effects of irradiation on both Ny 66 and PET cords were not found to be depending on the twist levels of the cords. The changes in the mechanical and thermal properties with absorbed dose at two different dose rates were measured. The mechanical properties were observed to deteriorate with increasing dose for Ny 66 cords, whereas remained almost unchanged for PET cords both in greige and dipped forms. Hot shrinkage value for the greige Ny 66 cords was found to be improved, i.e. decreased. This decrease was much lower for greige PET than Ny 66 cords. It is concluded that PET cord has higher radiation resistance than Ny 66 cord and the effects of high energy irradiation on tyre cords have to be taken into consideration during tyre design if pre-vulcanization with high energy radiation is to be applied. @ 2007 Elsevier B.V. All rights reserved.