Similarities and differences of nano-sized levan synthesized by Bacillus haynesii at low and high temperatures: Characterization and bioactivity


International Journal of Biological Macromolecules, vol.253, 2023 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 253
  • Publication Date: 2023
  • Doi Number: 10.1016/j.ijbiomac.2023.126804
  • Journal Name: International Journal of Biological Macromolecules
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, INSPEC, Veterinary Science Database
  • Keywords: Antimicrobial, Bacillus haynesii, Levan, Levansucrase, Psychrophilic, Thermophilic
  • Hacettepe University Affiliated: Yes


Levan is a biopolymer with many different uses. Temperature is an important parameter in biopolymer synthesis. Herein, levan production was carried out from Bacillus haynesii, a thermophilic microorganism, in the temperature range of 4 °C-95 °C. The highest levan production was measured as 10.9 g/L at 37 °C. The synthesized samples were characterized by FTIR and NMR analysis. The particle size of the levan samples varied between 153 and 824.4 nm at different temperatures. In levan samples produced at high temperatures, the water absorption capacity is higher in accordance with the particle size. Irregularities were observed in the surface pores at temperatures of 60 °C and above. The highest emulsion capacity of 83.4 % was measured in the sample synthesized at 4 °C. The antioxidant activity of all levan samples synthesized at different temperatures was measured as 84 % on average. All synthesized levan samples showed antibacterial effect on pathogenic bacteria. In addition, levan synthesized at 45 °C showed the highest antimicrobial effect on E. coli ATCC 35218 with an inhibition zone of 21.3 ± 1.82 mm. Antimicrobial activity against yeast sample C. albicans, was measured only in levan samples synthesized at 80 °C, 90 °C, 95 °C temperatures. Levan synthesized from Bacillus haynesii at low and high temperatures showed differences in characterization and bioactivity.