Feature-Driven Characterization of Microservice Architectures: A Survey of the State of the Practice


Creative Commons License

Soylemez M., Tekinerdogan B., KOLUKISA TARHAN A.

APPLIED SCIENCES-BASEL, cilt.12, sa.9, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 9
  • Basım Tarihi: 2022
  • Doi Numarası: 10.3390/app12094424
  • Dergi Adı: APPLIED SCIENCES-BASEL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: microservice architecture, micro-service, architecture, survey, PATTERNS
  • Hacettepe Üniversitesi Adresli: Evet

Özet

With the need for increased modularity and flexible configuration of software modules, microservice architecture (MSA) has gained interest and momentum in the last 7 years. As a result, MSA has been widely addressed in the literature and discussed from various perspectives. In addition, several vendors have provided their specific solutions in the state of the practice, each with its challenges and benefits. Yet, selecting and implementing a particular approach is not trivial and requires a broader overview and guidance for selecting the proper solution for the given situation. Unfortunately, no study has been provided that reflects on and synthesizes the key features and challenges of the current MSA solutions in the state of the practice. To this end, this article presents a feature-driven characterization of micro-service architectures that identifies and synthesizes the key features of current MSA solutions as provided by the key vendors. A domain-driven approach is adopted in which a feature model is presented defining the common and variant features of the MSA solutions. Further, a comparative analysis of the solution approaches is provided based on the proposed feature model.