Stability of spoil piles at two coal mines in Turkey: Geotechnical characterization and design considerations


Kasmer O., Ulusay R.

ENVIRONMENTAL & ENGINEERING GEOSCIENCE, cilt.12, sa.4, ss.337-352, 2006 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 4
  • Basım Tarihi: 2006
  • Doi Numarası: 10.2113/gseegeosci.12.4.337
  • Dergi Adı: ENVIRONMENTAL & ENGINEERING GEOSCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.337-352
  • Hacettepe Üniversitesi Adresli: Evet

Özet

One of the major problems in surface mining of coal is the stability of disposed overburden materials. Geotechnical considerations are thus very important in rational planning for disposal, reclamation, treatment, and utilization of mine waste material. The subject of this study is the stability of spoil piles at open pit coal mines located in the Central Anatolia, Turkey. The coal is produced from two adjacent open pits. While a large portion of the spoil piles dumped at the Central Pit has experienced slope failure, no spoil pile instability has been experienced at the South Pit. This article outlines the results of field and laboratory investigations to describe the mechanism of the spoil pile failure in the Central Pit and the geotechnical design considerations for the spoil piles at the South Pit based on the experience gained from the previous spoil failures. Limit equilibrium analysis carried out for the large-scale spoil failure indicated that deep-seated sliding along the interface between underclay and dragline spoil piles and rotational slip through the overburden spoil material may be all occurring simultaneously as water migrates through these areas. Sensitivity analyses revealed that spoil pile instability is not expected at the South Pit when the current spoil placement method is used as long as the generation of high water pressures in the spoil piles is not permitted. Comparisons between the results of finite element analysis and long-term monitoring data also confirmed the results of sensitivity analyses and indicated a vertical deformation associated with compaction of the spoil material.