Heat transfer in a pulsed bubbling fluidized bed

Zhang D., Koksal M.

POWDER TECHNOLOGY, vol.168, no.1, pp.21-31, 2006 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 168 Issue: 1
  • Publication Date: 2006
  • Doi Number: 10.1016/j.powtec.2006.06.017
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.21-31
  • Hacettepe University Affiliated: Yes


Surface-to-bed heat transfer and pressure measurements were carried out in a 0.17 in ID pulsed bubbling fluidized bed with glass bead and silica sand particles having mean diameters ranging from 37 mu m to 700 mu m to investigate the effects of flow pulsation on heat transfer and bed hydrodynamics. A solenoid valve was used to supply pulsed air to the bed at I to 10 Hz. The bed surface was found to oscillate with the frequency of pulsation, the oscillation's amplitude decreasing with frequency. The standard deviation of the bed pressure drop in the pulsed bed was found to be larger than that in the conventional bed due to the acceleration force imposed by pulsation. For both Geldart B and A particles, high frequency pulsation (7, 10 Hz) enhances the heat transfer compared to continuous flow, the enhancement diminishing with superficial gas velocity and particle size. For Geldart B particles, the effect of pulsation on heat transfer ceases around U-o/U-mf=3.5, whereas 24% improvement in heat transfer coefficient was obtained for 60 gin glass bead particles (Group A) at superficial gas velocities as high as UoWmf = 27. Furthermore, in the fixed bed (U-o/U-mf < 1) for Geldart B particles, I Hz pulsation was found to be very effective resulting in two- to three-fold increase in heat transfer coefficient compared to continuous flow at the same superficial gas velocity. The flow pulsation loses its effect on heat transfer with increasing static bed height, i.e., when H-bed/D > 0.85. (c) 2006 Elsevier B.V. All rights reserved.