Glacial destruction of cave systems in high mountains, with a special reference to the Aladaglar massif, Central Taurus, Turkey


Klimchouk A., Bayari S., Nazik L., Toerk K.

ACTA CARSOLOGICA, cilt.35, sa.2, ss.111-121, 2006 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 35 Sayı: 2
  • Basım Tarihi: 2006
  • Dergi Adı: ACTA CARSOLOGICA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.111-121
  • Hacettepe Üniversitesi Adresli: Hayır

Özet

Erasure of karst features and dissection of karst are among the main destructive effects of glacial action upon karst (Ford, 1983). They lead to destruction of functional relationship between the relief and a karst system, and to glacial dissection of pre-glacial cave systems. Stripping of the epikarstic zone and upper parts of cave systems on sub-horizontal surfaces results in prevalence of decapitated shafts in high mountains affected by glaciations. Vertical dissection of a karst massif by glacial erosion creates cave openings in sub-vertical surfaces (cliffs), a well known feature. Observations of vertical shafts exposed by cliffs are less common. Such shafts, unwalled by surface geomorphic processes, are in a certain way an analogous to the "unroofed" caves, exposed by denudational lowering of sub-horizontal surfaces. The Aladaglar Massif (Central Taurus, Turkey) is an Outstanding example of high mountain karst. The high-altitude part of the massif has been severely glaciated during Quaternary Glacial erosion was the dominant factor in the overall surface morphology development, resulting in the formation of numerous glacial valleys, cirques, ridges and pyramidal (horn) peaks. The overall relief between the highest peaks and the lowest karst springs in Aladaglar is 3350 m. The local vertical magnitude of relief between bottoms of glacial valleys and surrounding ridges is up to 1700 m. Recent studies suggest that the most recent major glaciation occurred in the Aladaglar massif during the Holocene Cooling and terminated between 9,300 and 8,300 years BP. This paper describes unwalled shafts at subvertical surfaces, a feature which is common in Aladaglar but is not so common, or overlooked, in other high mountain areas. Exposure of such shafts is mainly due to intense gravitational processes induced by the combined effect of the removal of the ice support to cliffs and the glacial rebound.