Protein Kinases in Hematological Disorders


PROTEIN KINASE-MEDIATED DECISIONS BETWEEN LIFE AND DEATH, vol.1275, pp.383-393, 2021 (SCI-Expanded) identifier identifier


Cell signaling is an important part of the complex system of molecular communication that governs basic cellular activities and coordinates cell cycle machinery. Pathological alterations in the cellular information processing may be responsible for the diseases such as cancer. Numerous diseases may be treated effectively via the pharmacological management of cellular signaling. Protein kinases (PK) have significantly important roles in the cell signal transduction process. Protein kinases phosphorylate serine, threonine, tyrosine and histidine amino acids in a wide variety of molecular networks. Two main PK groups are distinguished; serine/threonine kinase and tyrosine kinases. MAPK (mitogen-activated protein kinases), ERK, EGFR (epidermal growth factor receptor), src, abl, FAK (focal adesion kinase), and JAK (janus family kinase) are considered as the main PK molecular networks. Protein kinases are closely related to the pathobiology of hematologic neoplastic disorders. For instance; JAKV617F point mutationcausing polycythemia vera and essential thrombocytosis occur at the position 617 in the JH2 domain of the JAK2 gene. The protein kinase inhibitor drugs targeting specific kinase molecules have already been developed and widely used in the field of Clinical Hematology. The existence of a local renin-angiotensin system (RAS) specific to the hematopoietic bone marrow (BM) microenvironment had been proposed two decades ago. Local BM RAS is important in hematopoietic stem cell biology and microenvironment. There are interactions among the local BM RAS and PK. For example, ACE2-ang(1-7)-Mas axis inhibits p38 MAPK/NF-kappa B signaling pathway. The Local BM RAS may have a role in the effect on PK in this biological spectrum. The aim of this review is to outline the functions of PKs in the pathobiology of hematologic neoplastic disorders.