Leptin treatment of in vitro cultured embryos increases outgrowth rate of inner cell mass during embryonic stem cell derivation


Taskin A. C., Kocabay A., Ebrahimi A., Karahuseyinoglu S., Sahin G. N., Ozcimen B., ...More

IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, vol.55, no.7, pp.473-481, 2019 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 55 Issue: 7
  • Publication Date: 2019
  • Doi Number: 10.1007/s11626-019-00367-y
  • Journal Name: IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.473-481
  • Keywords: Leptin, Mouse, Embryo, Stem cell, Development, MOUSE BLASTOCYSTS, ES CELLS, ESTABLISHMENT, PROMOTES, LINE, IMPLANTATION, EXPRESSION, GENERATION, QUALITY, GENE
  • Hacettepe University Affiliated: No

Abstract

Leptin, a metabolic hormone, regulates the reproductive functions responding to both nutritional and body conditions. Embryonic stem cells play important roles in reproductive technology, but their derivation can be challenging. In this study, we evaluated the derivation rates of mouse embryonic stem cell (mESC) line from blastocysts developing in embryo culture media supplemented with different leptin concentrations. The results showed that addition of leptin into the embryo culture medium supported the in vitro development of mouse embryo. The mESC line derivation rates for media treated with 0, 10, 50, and 100ng/ml of leptin were 61.24 % (54/88), 84.96 % (42/50), 81.79 % (61/76), and 85.78 % (56/67), respectively. In addition, leptin treatment of blastocysts upregulated the expression levels of the trophectoderm marker Cdx2, whereas inner cell mass markers Oct-4 and Nanog were not affected. mESC lines derived after leptin treatment demonstrated hallmarks of pluripotency, such as alkaline phosphatase activity, expression of, OCT4, NANOG, and SSEA1, as well as the ability to form embryoid bodies and well-differentiated teratomas. In conclusion, leptin has a positive effect on the derivation rate of mouse embryonic stem cell lines which may be, in part, due to its effects on the development of the trophectoderm cell lineage in the embryo.