JOURNAL OF MATHEMATICAL CHEMISTRY, cilt.50, sa.7, ss.1920-1930, 2012 (SCI-Expanded)
Approximate analytical bound state solutions of the radial Schrodinger equation are studied for a two-term diatomic molecular potential in terms of the hypergeometric functions for the cases where q >= 1 and q = 0. The energy eigenvalues and the corresponding normalized wave functions of the Manning-Rosen potential, the 'standard' Hulthen potential and the generalized Morse potential are briefly studied as special cases. It is observed that our analytical results are the same with the ones obtained before.