On 3-uniform hypergraphs without a cycle of a given length


Furedi Z., ÖZKAHYA L.

DISCRETE APPLIED MATHEMATICS, cilt.216, ss.582-588, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 216
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1016/j.dam.2016.10.013
  • Dergi Adı: DISCRETE APPLIED MATHEMATICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.582-588
  • Hacettepe Üniversitesi Adresli: Evet

Özet

We study the maximum number of hyperedges in a 3-uniform hypergraph on n vertices that does not contain a Berge cycle of a given length l. In particular we prove that the upper bound for C2k+1-free hypergraphs is of the order O(k(2)n(1+1/k)), improving the upper bound of Gyori and Lemons (2012) by a factor of Theta (k(2)). Similar bounds are shown for linear hypergraphs. (C) 2016 Elsevier B.V. All rights reserved.