Crystal structure, Hirshfeld surface analysis, interaction energy and DFT calculations and energy frameworks of methyl 6-chloro-1-methyl-2-oxo-1,2-dihydroquinoline-4-carboxylate


Creative Commons License

Baba Y. F., Hayani S., Dalbouha S., HÖKELEK T., Chahdi F. O., Mague J. T., ...Daha Fazla

ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS, cilt.78, ss.425-437, 2022 (ESCI) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 78
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1107/s2056989022002912
  • Dergi Adı: ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus
  • Sayfa Sayıları: ss.425-437
  • Anahtar Kelimeler: crystal structure, hydrogen-bonding, pi-stacking, dihydroquinoline, INTERMOLECULAR INTERACTIONS, QUANTITATIVE-ANALYSIS, MODEL ENERGIES
  • Hacettepe Üniversitesi Adresli: Evet

Özet

In the title compound, C12H10ClNO3, the dihydroquinoline moiety is not planar with a dihedral angle between the two ring planes of 1.61 (6)degrees. An intramolecular C-H center dot center dot center dot O hydrogen bond helps to establish the rotational orientation of the carboxyl group. In the crystal, sheets of molecules parallel to (10 (1) over bar) are generated by C-H center dot center dot center dot O and C-H center dot center dot center dot Cl hydrogen bonds, and are stacked through slipped pi-stacking interactions between inversion-related dihydroquinoline units. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H center dot center dot center dot H (34.2%), H center dot center dot center dot O/O center dot center dot center dot H (19.9%), H center dot center dot center dot Cl/Cl center dot center dot center dot H (12.8%), H center dot center dot center dot C/C center dot center dot center dot H (10.3%) and C center dot center dot center dot C (9.7%) interactions. Computational chemistry indicates that in the crystal, the C-H center dot center dot center dot Cl hydrogen-bond energy is -37.4 kJ mol(-1), while the C-H center dot center dot center dot O hydrogen-bond energies are -45.4 and -29.2 kJ mol(-1). An evaluation of the electrostatic, dispersion and total energy frameworks revealed that the stabilization is dominated via the dispersion energy contribution. Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state, and the HOMO - LUMO behaviour was elucidated to determine the energy gap.