On a class of modules


Ozcan A. Ç.

PUBLICATIONES MATHEMATICAE-DEBRECEN, cilt.57, ss.269-275, 2000 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 57
  • Basım Tarihi: 2000
  • Doi Numarası: 10.1016/j.jvs.2014.12.052
  • Dergi Adı: PUBLICATIONES MATHEMATICAE-DEBRECEN
  • Sayfa Sayıları: ss.269-275

Özet

Let R be a ring with identity and M a unital right R-module. Let Z*(M) = {m epsilon M : mR << E(mR)}. In this study we consider the property (T): For every right R-module M with Z*(M) = Rad M, M is injective. We give a characterization of the property (T) when R is a prime PI-ring. Also, over a right Noetherian ring R we prove that if R satisfies (T) then every right R-module is the direct sum of an injective module and a Max-module.