POLYCYCLIC AROMATIC COMPOUNDS, cilt.43, sa.5, ss.3896-3909, 2023 (SCI-Expanded)
In this study, a new approach for the detection of benzo[a]pyrene (BaP) in aqueous media is presented by combining molecularly imprinted polymers (MIPs) with surface plasmon resonance (SPR) sensors. Herein, BaP imprinted sensor was fabricated on a SPR chip in the presence of a pre-polymerization complex of BaP and N-methacryloyl-L-phenylalanine, 2-hydroxyethyl methacrylate (HEMA), and ethylene glycol dimethacrylate (EGDMA). The developed sensor was characterized by atomic force microscopy, ellipsometry, and contact angle measurements. Association kinetics analysis via Scatchard, Langmuir, Freundlich, Langmuir-Freundlich isotherms were applied to the data and Langmuir adsorption model was found as the most accurate model for the affinity sensor system. MIPs-based SPR sensor linearly responded to BaP in a concentration range of 20-400 ng mL(-1) with an excellent LOD of 14.97 ng L-1. The SPR sensor was found to be highly selective toward BaP according to the selectivity study results in the presence of interfering agents such as benzo[b]floranthene (BbF), benzo[k]floranthene (BkF), indeno[1,2,3-cd]pyrene (IcdP), and 1-naphthol. The studies demonstrated that MIPs-based SPR sensor provides rapid and reliable detection and identification of polyaromatic hydrocarbons (PAHs) within a quite short time.