ANNALS OF INDIAN ACADEMY OF NEUROLOGY, cilt.23, sa.3, ss.280-288, 2020 (SCI-Expanded)
Background: Hereditary diffuse leukoencephalopathy with spheroids (HDLS), first described in 1984 is a rare disorder. Generally, it presents at adulthood with dementia, motor impairment, extrapyramidal abnormalities, and epilepsy. Definitive diagnosis is made by brain biopsy. Neuroimaging studies have revealed confluent white matter lesions predominantly in the frontal lobes, corpus callosum, and corticospinal tracts on conventional magnetic resonance imaging. Only a few reports showed diffusion restriction in the cerebral white matter; furthermore, rarer reports emphasized persistent foci of diffusion restriction as a diagnostic imaging marker. Objective: Herein, we have aimed to illustrate the first biopsy-proven Turkish HDLS pedigree consisting of 18 persons in 3 generations which contained 4 affected individuals. Materials and Methods: Four individuals in the pedigree of HDLS [two affected patients (patient III-1 and patient III-2) and two unaffected individuals (patient II-4 and patient III-5)] were investigated with conventional MRI and Diffusion-weighted imaging (DWI) using 1.5 Tesla (T) scanner. All four individuals were evaluated via neurological examinations and Mini-Mental State Examination. Brain biopsy study was performed on patient III-2. Finally, an extensive literature review involving pathology investigations and neuroimaging studies of HDLS patients was conducted. Results: DWIs of two investigated patients showed deep white matter lesions with persistent diffusion restriction. Computed tomography imaging showed punctate mineralization in the lesions. Biopsy specimens of patient III-2 demonstrated axonal spheroids which were typical for HDLS. Conclusions: Via the presentation of our pedigree and literature review, we suggest HDSL as a first-line differential diagnosis in patients with undiagnosed adult-onset familial leukoencephalopathy, in particular, those with MRI lesions of frontal white matter and centrum semiovale associated with foci of diffusion restriction and mineralization. Finally, we think that the persistence of the diffusion restriction in deep white matter lesions should be kept in mind as a crucial neuroimaging sign for HDLS.