Antioxidative and antiproliferative effects of propolis-reduced silver nanoparticles

Tan G., Ilk S., Foto F. Z., FOTO E., SAĞLAM N.

ADVANCES IN NANO RESEARCH, vol.10, no.2, pp.139-150, 2021 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 10 Issue: 2
  • Publication Date: 2021
  • Doi Number: 10.12989/anr.2021.10.2.139
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Communication Abstracts, Metadex, Civil Engineering Abstracts
  • Page Numbers: pp.139-150
  • Hacettepe University Affiliated: Yes


In this study, phytochemicals present in Propolis Extract (PE) were employed as reducing and stabilizing reagents to synthesize silver nanoparticles. Three propolis-reduced silver nanoparticles (P-AgNPs1-3) were synthesized using increasing amounts of PE. P-AgNPs were treated with different cancer cells -lung (A549), cervix (HeLa) and colon (WiDr) for 24, 48 and 72 h to evaluate their anti -proliferative activities. A non-cancerous cell type (L929) was also used to test whether suppressive effects of P-AgNPs on cancer cell proliferation were due to a general cytotoxic effect. The characterization results showed that the bioactive contents in propolis successfully induced particle formation. As the amount of PE increased, the particle size decreased; however, the size distribution range expanded. The antioxidant capacity of the particles increased with increased propolis amounts. P-AgNP1 exhibited almost equal inhibitory effects across all cancer cell types; however, P-AgNP2 was more effective on HeLa cells. P-AgNPs3 showed greater inhibitory effects in almost all cancer cells compared to other NPs and pure propolis. Consequently, the biological effects of P-AgNPs were highly dependent on PE amount, NP concentration, and cell type. These results suggest that AgNPs synthesized utilizing propolis phytochemicals might serve as anti -cancer agents, providing greater efficacy against cancer cells.