RSC ADVANCES, sa.8, ss.6260-6280, 2025 (SCI-Expanded)
Developing novel membranes marks a significant advancement in flexible energy storage systems. In this work, a hybrid track-etched membrane (TeM) was synthesized through RAFT-mediated polymerization, where poly(acrylic acid) (PAA) was grafted onto both the nanopore walls and surface of PET-based TeMs (PET-g-PAA), creating a stable and functionalized matrix for further enhancements. The membrane was then modified by incorporating electrospun composite nanofibers made from poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) as the polymer matrix, ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate, EM-IMBF4) as the supporting electrolyte, and graphene oxide (GO) as the ionic conductivity enhancer. The nanofibers (PVDF-HFP_GO) were deposited on either one or both surfaces of the grafted membrane. These modifications substantially improved the membrane's active surface area, porosity, and electrochemical performance, positioning it as a strong candidate for flexible energy storage applications. Comprehensive characterizations verified the successful modification and enhanced properties, including FTIR, SEM-EDX, XPS, TGA, porosity analysis, and contact angle measurements. Electrochemical performance was evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Among the tested membranes, the one modified with 0.5% GO-containing nanofibers demonstrated the highest capacitance and coulombic efficiency. Although the membrane showed strong charge/discharge efficiency and high initial performance, performance degradation was observed after extended cycling, particularly at higher current densities. The ionic conductivity of the hybrid membranes (with a GO concentration of 0.5%) reaches 14.83 x 10-3 mS cm-1 for single-sided nanofiber-covered membranes and 39.08 x 10-3 mS cm-1 for double-sided nanofiber-covered membranes, while for similar samples without addition of GO this values were found to be of 1.42 x 10-3 mS cm-1, which is significantly higher than conventional polymer-based electrolyte membranes (similar to 10-4 to 10-2 mS cm-1), and comparable to advanced ionic gel-based systems (similar to 10-2 to 10-1 mS cm-1). The synergistic effects of PAA grafting and PVDF-HFP_GO fibers delivered competitive charge/discharge efficiency when compared to similar systems, though further optimization of current density and cycling stability is required. This study highlights the potential of combining the RAFT-mediated grafting technique with electrospun composite nanofibers in modifying TeMs to develop durable and flexible supercapacitor membranes with promising electrochemical performance.