Uluslararası Türk Eğitim Bilimleri Dergisi, cilt.2023, sa.21, ss.549-587, 2023 (Hakemli Dergi)
Computerized Multistage Testing (MST) is an adaptive testing approach in which the test taker completes stages and modules on a pre-assembled panel according to his/her ability level. In MST, the test taker is routed to a module in the following stage based on his/her responses to the module in each stage. The test taker is expected to be routed to the module that fits his/her ability level best in the following stages. If the test taker is not routed to the module appropriate to his/her ability level, misrouting can be mentioned. Misrouting is thought to affect both measurement accuracy and the test taker's psychology. Although it is very difficult to completely eliminate misrouting, it is assumed that it can be reduced with the basic components of the MST design. The purpose of this study is to determine the level of misrouting according to different MST designs and to investigate the effects of changes in test design on the level of misrouting. The main components that are considered to affect misrouting are the MST test design [1-3, 1-2-3, 1-3-3], routing module design [Wide, Narrow], test length [12, 24, 36] and module length [L-S, M-M, S-L]. This study, which aims to reveal the current situation, is descriptive research and it was carried out by simulation method. The results of the study show that MST design and components can be effective in reducing misrouting. Three-stage MST designs offer lower misrouting and higher measurement accuracy than two-stage MST designs. Furthermore, increasing the test length and designing the routing module with a wide range of abilities reduce the misrouting rate. According to the measurement accuracy results, it can be stated that misrouting is not a significant problem in the MST in general, although the measurement accuracy of the misrouted test takers is low. It was concluded that the ability levels of the misrouted test takers were generally concentrated at the intersection points of the module information functions of the adjacent modules and generally in the middle of the ability scale.