GPS SOLUTIONS, cilt.28, sa.3, ss.1-17, 2024 (SCI-Expanded)
In recent years, there has been increasing attention to positioning, navigation, and timing applications with smartphones. Because of frequently disrupted carrier phase observations, code observations remain critical for smartphone-based positioning. Considering a realistic stochastic model is mandatory to obtain the utmost positioning performance, this study proposes a sound stochastic approach for code observations from Android smartphones. The proposed approach includes a modified version of the SIGMA-ɛ variance model with different coefficients for each GNSS constellation and a robust Kalman filter method. First the noise characteristics of observations from the Xiaomi Mi 8 smartphone are analyzed utilizing code-minus-phase combinations to estimate the coefficients for each GNSS constellation. This includes the determination of a variance model as well as a check of the probability distribution. Finally, the proposed approach is validated in the positioning domain using single-frequency code observation-based real-time standalone positioning. The results show that more than 95% of observations follow the normal distribution when the proposed approach is applied. Compared with the conventional stochastic approach, including a C/N0-dependent model and standard Kalman filter, it improves the positioning accuracy by 45.8% in a static experiment, while its improvement is equal to 26.6% in a kinematic experiment. For the static and kinematic experiments, in 50% of the epochs, the 3D positioning errors are smaller than 3.0 m and 3.4 m for the proposed stochastic approach. The results exhibit that the stochastic properties of code observations from smartphones can be successfully represented by the proposed approach.