Effects of gamma and electron beam irradiation on the properties of calendered cord fabrics


Creative Commons License

Aytaç A., Deniz V., Şen M., Hegazy E., Guven O.

RADIATION PHYSICS AND CHEMISTRY, cilt.79, ss.297-300, 2010 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 79
  • Basım Tarihi: 2010
  • Doi Numarası: 10.1016/j.radphyschem.2009.08.022
  • Dergi Adı: RADIATION PHYSICS AND CHEMISTRY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.297-300
  • Hacettepe Üniversitesi Adresli: Evet

Özet

The effects of gamma and e-beam irradiation on mechanical and structural properties of nylon 66 (Ny 66), nylon 6 (Ny 6) and poly(ethylene terephthalate) (PET) fabrics used in tyres were investigated. The untreated (greige), treated cords and calendered fabrics were irradiated at different doses. It is found that the effects of high energy irradiation on greige, treated cords and calendered fabrics are similar. No protective effect of compounds used in calendering was observed against radiation-induced oxidative degradation. The deterioration effect of gamma irradiation on mechanical properties is much higher than that of e-beam irradiation for all types of samples. Limiting viscosity numbers of both gamma and e-beam irradiated nylon 6 and nylon 66 cords were found to decrease with increasing dose. It is concluded that PET calendered fabric has higher resistance to ionizing radiation. Ny 6 and Ny 66 calendered fabrics are more sensitive even at low doses. Therefore, the effects of high energy irradiation on tyre cords have to be taken into consideration during tyre design reinforced with particularly Ny fabrics if pre-vulcanization with high energy radiation is to be applied. (C) 2009 Elsevier Ltd. All rights reserved.

The effects of gamma and e-beam irradiation on mechanical and structural properties of nylon 66 (Ny 66), nylon 6 (Ny 6) and poly(ethylene terephthalate) (PET) fabrics used in tyres were investigated. The untreated (greige), treated cords and calendered fabrics were irradiated at different doses. It is found that the effects of high energy irradiation on greige, treated cords and calendered fabrics are similar. No protective effect of compounds used in calendering was observed against radiation-induced oxidative degradation. The deterioration effect of gamma irradiation on mechanical properties is much higher than that of e-beam irradiation for all types of samples. Limiting viscosity numbers of both gamma and e-beam irradiated nylon 6 and nylon 66 cords were found to decrease with increasing dose. It is concluded that PET calendered fabric has higher resistance to ionizing radiation. Ny 6 and Ny 66 calendered fabrics are more sensitive even at low doses. Therefore, the effects of high energy irradiation on tyre cords have to be taken into consideration during tyre design reinforced with particularly Ny fabrics if pre-vulcanization with high energy radiation is to be applied.