MiniMax epsilon-stable cluster validity index for Type-2 fuzziness


ÖZKAN İ., Turksen I. B.

INFORMATION SCIENCES, vol.184, no.1, pp.64-74, 2012 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 184 Issue: 1
  • Publication Date: 2012
  • Doi Number: 10.1016/j.ins.2011.07.036
  • Journal Name: INFORMATION SCIENCES
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.64-74
  • Hacettepe University Affiliated: Yes

Abstract

In this paper, we concentrate on the usage of uncertainty associated with the level of fuzziness in determination of the number of clusters in FCM for any data set. We propose a MiniMax epsilon-stable cluster validity index based on the uncertainty associated with the level of fuzziness within the framework of interval valued Type 2 fuzziness. If the data have a clustered structure, the optimum number of clusters may be assumed to have minimum uncertainty under upper and lower levels of fuzziness. Upper and lower values of the level of fuzziness for Fuzzy C-Mean (FCM) clustering methodology have been found as m = 2.6 and 1.4, respectively, in our previous studies. Our investigation shows that the stability of cluster centers with respect to the level of fuzziness is sufficient for the determination of the number of clusters. (C) 2011 Elsevier Inc. All rights reserved.