Novel injectable calcium-magnesium phosphate cement-based composites with piezoelectric properties: advancements in bone regeneration applications


Creative Commons License

Sakar N., ZİYLAN A., Karakaya M., Adem U., TANSEL T.

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, sa.15, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s10854-024-12761-8
  • Dergi Adı: JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Chemical Abstracts Core, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, MEDLINE, Metadex, Civil Engineering Abstracts
  • Hacettepe Üniversitesi Adresli: Evet

Özet

Designing a novel injectable bone cement is an important approach to the success of bone healing in minimally invasive surgeries. As natural bone has a piezoelectric property, which is crucial in bone regeneration, this study focused on the development of a novel injectable composite bone cement with piezoelectric properties. For the composite composition, calcium and zirconium doped barium titanate (BCZT) was used for its piezoelectric property, while calcium phosphate and magnesium phosphate cement (CMPC) were preferred for its bone-like properties. In this framework, first BCZT, CMPC, and their composites were prepared, and their phase structures, particle size distributions, and piezoelectric and dielectric properties were investigated. Then, the composite bone cements were prepared by mixing CMPC with BCZT in three different ratios (20%, 30%, and 40%). Next, polysorbate 80 solution was added to the cement mixtures to prepare the injectable pastes. Finally, injectability, setting time, and compressive strength of the composites were assessed. As a result, the composite bone cement containing 30% BCZT has the potential to be used as an injectable bone cement in invasive orthopedic surgery.