Treatment of landfill leachate with laboratory scale vertical flow constructed wetlands: plant growth modeling


YALÇUK A., UĞURLU A.

INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, cilt.22, sa.2, ss.157-166, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 22 Sayı: 2
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1080/15226514.2019.1652562
  • Dergi Adı: INTERNATIONAL JOURNAL OF PHYTOREMEDIATION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, EMBASE, INSPEC, MEDLINE, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.157-166
  • Hacettepe Üniversitesi Adresli: Evet

Özet

The main purpose of this study was to investigate the removal of ammonia, orthophosphate, and COD present in landfill leachate using vertical subsurface flow constructed wetland systems (VFCW). The effect of different types of plants (Typha latifolia and Canna indica) in the removal of pollutants was also investigated. The systems were operated identically at a flow rate of 5 l/day and a hydraulic retention time (HRT) of 22 days in the T. latifolia reactor (R1), C. indica reactor (R2), and Control reactor (R3). Concentration-based average removal efficiencies for R1, R2, and R3 were NH4-N; 60.0%, 56.0%, and 46, COD; 81.0%, 84.0%, and 79.0%, PO4-P; 45.0%, 46.0%, and 32.0%, respectively. These results show that the model is a good predictive tool for determining the plant lengths using the growth equations. It is also revealed that the Logistic and Cubic models are suitable for the R1 and R2 reactors.