Three dimensional nanofibrous and compressible poly(L-lactic acid) bone grafts loaded with platelet-rich plasma

Creative Commons License

KOÇ S., ÇAKMAK S., GÜMÜŞDERELİOĞLU M., Ertekin T. S., ÇALIŞ M., Yılmaz M. M., ...More

Biomedical Materials (Bristol), vol.16, no.4, 2021 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 16 Issue: 4
  • Publication Date: 2021
  • Doi Number: 10.1088/1748-605x/abef5a
  • Journal Name: Biomedical Materials (Bristol)
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Chemical Abstracts Core, Compendex, EMBASE, INSPEC, MEDLINE, Metadex
  • Keywords: bone tissue engineering, three-dimensional electrospinning, poly(L-lactic acid), hydroxyapatite, platelet-rich plasma
  • Hacettepe University Affiliated: Yes


In this study, nanofibrous matrices of poly(L-lactic acid)-hydroxyapatite (PLLA-HAp) were successfully fabricated by three-dimensional (3D) electrospinning for use in the treatment of irregular bone damages. Compressibility analysis showed that 3D nanofibrous grafts occupied at least 2-fold more volume than their 2D form and they can easily take shape of the defect zone with irregular geometry. Moreover, the compression moduli of the PLLA and PLLA-HAp grafts were calculated as 8.0 ± 3.0 kPa and 11.8 ± 3.9 kPa, respectively, while the strain values of the same samples at the maximum load of 600 kPa were 164 ± 28% and 130 ± 20%, respectively. Treatment of the grafts with aqueous sodium hydroxide solution increased the surface roughness and thus the alloplastic graft materials (PLLA-HAp/M) protecting the fiber morphology were produced successfully. Then, platelet-rich plasma (PRP) was loaded into the surface modified grafts and activated with 10% calcium chloride. The efficiency of the activation was evaluated with flow cytometry and it was found that after activation the percentages of CD62 (P-selectin) and CD41/61 (glycoprotein IIb/IIIa) proteins increased approximately 4-fold. Surface hydrophilicity and biological activity of the PLLA-HAp grafts were enhanced by fibrin coating after PRP activation. The in vitro cell culture studies which were carried out by using mouse pre-osteoblasts (MC3T3-E1) showed that graft materials supported by PRP increased cellular proliferation and osteogenic differentiation significantly. The in vivo results demonstrated that compared with bare PLLA-HAp/M grafts, the PRP loaded grafts (PRP-PLLA-HAp/M) induced significantly greater bone formation based on computed tomography, histological and immunohistochemical analyses. Our findings suggest that 3D PLLA nanofibrous matrices can be used as a graft material for irregular bone defects especially when combined with PRP as an osteogenic induction agent.