Estimating the deformation modulus of rock masses: a comparative study


INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, vol.40, no.1, pp.55-63, 2003 (SCI-Expanded) identifier identifier


Although the modulus of deformation of rock masses has crucial importance for geotechnical projects, such as tunnels and dams, the determination of this parameter by in situ tests requires considerable costs and involves difficult operational processes. For this reason, empirical equations for the indirect estimation of the modulus of deformation are an interesting issue for rock engineers and engineering geologists. This study includes assessment of the prediction performances of some existing empirical equations, using in situ plate loading test data and rock mass properties, producing an empirical equation depending on the new data, construction of a fuzzy inference system for the estimation of modulus of deformation, and making a comparison between results obtained from the empirical equations and fuzzy inference system. A series of calculations and statistical analyses were undertaken. It is concluded that the performance of the empirical equations and fuzzy inference system obtained in this study is satisfactory. However, the prediction models developed in this study are limited by the number of the data used and the rock types employed. For these reasons, a crosscheck should be performed before using these prediction models for design purposes. (C) 2002 Published by Elsevier Science Ltd.