Problems Encountered during a Railway Tunnel Excavation in Squeezing and Swelling Materials and Possible Engineering Measures: A Case Study from Turkey


Creative Commons License

Aygar E. B., GÖKÇEOĞLU C.

SUSTAINABILITY, cilt.12, sa.3, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 3
  • Basım Tarihi: 2020
  • Doi Numarası: 10.3390/su12031166
  • Dergi Adı: SUSTAINABILITY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Scopus, Aerospace Database, Agricultural & Environmental Science Database, CAB Abstracts, Communication Abstracts, Geobase, INSPEC, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Hacettepe Üniversitesi Adresli: Evet

Özet

The T3 railway tunnel-under construction within the scope of the Bursa-Yeni*ehir high-speed train project-is located in northwestern Turkey and has a length of 1250 m. The tunnel is being constructed entirely in silty clay/clayey silt, sand, and clay units, and it is designed in accordance with the principles of weak ground tunneling described by the new Austrian tunneling method (NATM). When the tunnel excavations began in 2013, during and after portal excavations, a failure occurred at the entrance of the tunnel; thus, a revision of the support systems became mandatory. While the excavation works proceeded after the revision phase, a collapse occurred again at the tunnel face where the overburden thickness was low. This study presents the mechanisms of the collapse that took place at the portal location and in the middle of the tunnel. The proposed tunnel support systems and their numerical analyses are also discussed, because the case is interesting for the tunnel community and will inform future tunnel construction work. For this reason, the relationship between portal excavation and tunnel excavation stability is described. Consequently, tunnels excavated through weak ground conditions are considered, and the importance of considering the face stability of tunnels in tunneling studies is underlined.