Effect of hold depth and grip technique on maximal finger forces in rock climbing


AMCA A. M., Vigouroux L., ARITAN S., Berton E.

JOURNAL OF SPORTS SCIENCES, cilt.30, sa.7, ss.669-677, 2012 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 30 Sayı: 7
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1080/02640414.2012.658845
  • Dergi Adı: JOURNAL OF SPORTS SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.669-677
  • Anahtar Kelimeler: Sport climbing, crimp grip, slope grip, hold depth, finger forces, CLIMBERS, ENDURANCE, MUSCLES, INDIVIDUALS, POSITION, STRENGTH, FATIGUE, ELITE, CRIMP
  • Hacettepe Üniversitesi Adresli: Evet

Özet

The aim of this study was to understand how the commonly used climbing-specific grip techniques and hold depths influence the finger force capacities. Ten advanced climbers performed maximal voluntary force on four different hold depths (from 1 to 4 cm) and in two force directions (antero-posterior and vertical) using three grip techniques (slope, half crimp and full crimp). A specially designed platform instrumented with a 6-degrees-of-freedom (DoF) force/torque sensor was used to record force values. Results showed that the maximal vertical forces differed significantly according to the hold depth and the grip technique (ranged from 350.8 N to 575.7 N). The maximal vertical forces increased according to the hold depth but the form of this increase differed depending on grip technique. These results seemed to be more associated with finger-hold contact/interaction than with internal biomechanical factors. Similar results were revealed for antero-posterior forces (ranged from 69.9 N to 138.0 N) but, it was additionally noted that climbers have different hand-forearm posture strategies with slope and crimp grip techniques when applying antero-posterior forces. This point is important as it could influence the body position adopted during climbing according to the chosen grip technique. For trainers and designers, a polynomial regression model was proposed in order to predict the mean maximal force based on hold depth and adopted grip technique.

The aim of this study was to understand how the commonly used climbing-specific grip techniques and hold depths influence the finger force capacities. Ten advanced climbers performed maximal voluntary force on four different hold depths (from 1 to 4 cm) and in two force directions (antero-posterior and vertical) using three grip techniques (slope, half crimp and full crimp). A specially designed platform instrumented with a 6-degrees-of-freedom (DoF) force/torque sensor was used to record force values. Results showed that the maximal vertical forces differed significantly according to the hold depth and the grip technique (ranged from 350.8 N to 575.7 N). The maximal vertical forces increased according to the hold depth but the form of this increase differed depending on grip technique. These results seemed to be more associated with finger-hold contact/interaction than with internal biomechanical factors. Similar results were revealed for antero-posterior forces (ranged from 69.9 N to 138.0 N) but, it was additionally noted that climbers have different hand-forearm posture strategies with slope and crimp grip techniques when applying antero-posterior forces. This point is important as it could influence the body position adopted during climbing according to the chosen grip technique. For trainers and designers, a polynomial regression model was proposed in order to predict the mean maximal force based on hold depth and adopted grip technique.