On the chromatic polynomial and the domination number of k-Fibonacci cubes


Egeciouglu O., Saygı E., Saygı Z.

TURKISH JOURNAL OF MATHEMATICS, vol.44, no.5, pp.1813-1823, 2020 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 44 Issue: 5
  • Publication Date: 2020
  • Doi Number: 10.3906/mat-2004-20
  • Journal Name: TURKISH JOURNAL OF MATHEMATICS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH, TR DİZİN (ULAKBİM)
  • Page Numbers: pp.1813-1823
  • Hacettepe University Affiliated: Yes

Abstract

Fibonacci cubes are defined as subgraphs of hypercubes, where the vertices are those without two consecutive l's in their binary string representation. k-Fibonacci cubes are in turn special subgraphs of Fibonacci cubes obtained by eliminating certain edges. This elimination is carried out at the step analogous to where the fundamental recursion is used to construct Fibonacci cubes themselves from the two previous cubes by link edges. In this work, we calculate the vertex chromatic polynomial of k-Fibonacci cubes for k = 1,2. We also determine the domination number and the total domination number of k-Fibonacci cubes for n, k <= 12 by using an integer programming formulation.