ACTA MATHEMATICA HUNGARICA, cilt.155, sa.2, ss.324-331, 2018 (SCI-Expanded)
Several Komls like properties in Banach lattices are investigated. We prove that C(K) fails the -pre-Komls property, assuming that the compact Hausdorff space K has a nonempty separable open subset U without isolated points such that every u U has countable neighborhood base. We prove also that, for any infinite dimension al Banach lattice E, there is an unbounded convex uo-pre-Komls set C which is not uo-Komls.