Vancomycin Loaded Gelatin Microspheres Containing Wet Spun Poly(epsilon-caprolactone) Fibers and Films for Osteomyelitis Treatment

AKSOY E. A., Yagci B. S., Manap G., EROĞLU İ., ÖZTÜRK Ş., EKİZOĞLU M., ...More

FIBERS AND POLYMERS, vol.20, no.11, pp.2236-2246, 2019 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 20 Issue: 11
  • Publication Date: 2019
  • Doi Number: 10.1007/s12221-019-9271-7
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.2236-2246
  • Keywords: Osteomyelitis, Vancomycin, Poly(epsilon-caprolactone), Wet spinning, Fiber, IN-VITRO, BIODEGRADABLE POLY(EPSILON-CAPROLACTONE), DRUG-DELIVERY, RELEASE, MICROPARTICLES, FORMULATION, INFECTION
  • Hacettepe University Affiliated: Yes


In this study, it was aimed to develop drug eluting biodegradable and biocompatible bone supportive fibers and films, which can locally be applicable on the infected bone defect area for osteomyelitis treatment. For this purpose, vancomycin (Vm) loaded gelatin (G) microspheres were prepared and dispersed into poly(epsilon-caprolactone) (PCL) solution and then the suspension was processed as films and fibers by solvent casting and wet spinning techniques, respectively. The mean particle size distribution and morphology of Vm loaded G microspheres were characterized by laser diffraction method and scanning electron microscopy, respectively. In vitro Vm release profiles and release kinetics from microsphere, fiber and film formulations were investigated. In vitro biodegradation properties of fiber and film formulations were examined in both hydrolytic and enzymatic media during 25 days period. The cytotoxicity of Vm eluting films and fibers were tested on L929 cells by MTT assay. Presence of PCL in film and fiber formulations retarded the release of Vm from microspheres and provided long term sustained release. Vm eluting films and fibers exhibited strong antibacterial properties against Staphylococcus aureus and Staphylococcus epidermidis.