Ideal cell-decompositions for a hyperbolic surface and Euler characteristic


Sozen Y.

JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, cilt.45, ss.965-976, 2008 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 45 Konu: 4
  • Basım Tarihi: 2008
  • Doi Numarası: 10.4134/jkms.2008.45.4.965
  • Dergi Adı: JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY
  • Sayfa Sayıları: ss.965-976

Özet

In this article, we constructively prove that on a surface S with genus g >= 2, there exit maximal geodesic laminations with 7g - 7,...,9g - 9 leaves. Thus, S can have ideal cell- decompositions (i.e., S can be (ideally) triangulated by maximal geodesic laminations) with 7g - 7,...,9g - 9 (ideal) 1-cells.