Demonstration of coronary arteries and major cardiac vascular structures in congenital heart disease by cardiac multidetector computed tomography angiography.


Dogan O. F., KARÇAALTINCABA M., Yorgancioglu C., Demircin M., DOĞAN R., Ersoy U., ...Daha Fazla

The heart surgery forum, cilt.10, sa.1, 2007 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 1
  • Basım Tarihi: 2007
  • Doi Numarası: 10.1532/hsf98.20061013
  • Dergi Adı: The heart surgery forum
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Hacettepe Üniversitesi Adresli: Evet

Özet

BACKGROUND: Detection of coronary artery is important when considering surgical treatment of a congenital heart disease (CHD) such as tetralogy of Fallot (TF). Cardiac catheterization plays an important supplementary role in the evaluation of patients with CHD. In a few reports, it has been proposed that multidetector computed tomography (MDCT) can be helpful for the visualization of coronary arteries. We sought to demonstrate the feasibility and usefulness of MDCT angiography for anatomical evaluation of coronary arteries in CHD patients with suspected coronary artery anomalies. MATERIALS AND METHODS: A total of 10 patients, 9 pediatric and 1 adult, underwent MDCT angiography for the investigation of coronary artery anomalies and mediastinal vascular structures. Seven patients had TF; 5 of these patients were suspected of having coronary artery anomalies and 2 were suspected of having pulmonary artery atresia or a nonconfluent pulmonary artery. The other 3 patients had truncus arteriosus and severe left pulmonary artery stenosis (n = 1), double outlet right ventricle (n = 1), and Kawasaki disease (n = 1) with suspected coronary artery aneurysms. The entire heart, major vascular structures, and coronary artery anomalies were preoperatively scanned in patients with cyanotic heart disease. Examinations were performed by 16-MDCT with 1-mm slice thickness. A breath-holding test was performed in 5 patients. Nonionic iodinated contrast material (2 cc/kg) was administered by a power injector. RESULTS: Major vascular structures and the proximal part of the right and left coronary arteries were visualized successfully in all patients. Mid and/or distal segments of the coronary arteries were visualized in 5 patients with TF. Pulmonary vascular bed findings were also confirmed during surgery in patients with TF and in one patient with truncus arteriosus type I and severe left pulmonary artery stenosis. Kawasaki disease was diagnosed by the presence of aneurysms in one patient. Pulmonary artery atresia was confirmed in one patient and diameter of the pulmonary arteries (4 mm and 4.5 mm) was determined in the other 2 patients by MDCT. CONCLUSION: The advantage of MDCT for cardiac imaging is the shortened scanning time for imaging the entire heart without long breath-holding times. Selective conventional coronary angiography is invasive and technically difficult in pediatric patients. We suggest that MDCT angiography can be performed as a noninvasive method in patients with CHD for the evaluation of coronary artery anatomy and anomalies and mediastinal vascular structures.