Learning Actions From the Web


Ikizler-Cinbis N., Cinbis R. G., Sclaroff S.

12th IEEE International Conference on Computer Vision, Kyoto, Japonya, 29 Eylül - 02 Ekim 2009, ss.995-1002 identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Doi Numarası: 10.1109/iccv.2009.5459368
  • Basıldığı Şehir: Kyoto
  • Basıldığı Ülke: Japonya
  • Sayfa Sayıları: ss.995-1002
  • Hacettepe Üniversitesi Adresli: Hayır

Özet

This paper proposes a generic method for action recognition in uncontrolled videos. The idea is to use images collected from the Web to learn representations of actions and use this knowledge to automatically annotate actions in videos. Our approach is unsupervised in the sense that it requires no human intervention other than the text querying. Its benefits are two-fold: 1) we can improve retrieval of action images, and 2) we can collect a large generic database of action poses, which can then be used in tagging videos. We present experimental evidence that using action images collected from the Web, annotating actions is possible.