Nonlocal coupled HI-MKdv systems


Creative Commons License

Pekcan A.

COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, cilt.72, ss.493-515, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 72
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1016/j.cnsns.2019.01.013
  • Dergi Adı: COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.493-515
  • Anahtar Kelimeler: Ablowitz-Musslimani reduction, Nonlocal coupled Hirota-Iwao modified, Korteweg-de vries equations, Hirota bilinear form, Pfaffians, Soliton solutions, INVERSE SCATTERING TRANSFORM, NONLINEAR SCHRODINGER-EQUATION, DE-VRIES EQUATION, SOLITON-SOLUTIONS
  • Hacettepe Üniversitesi Adresli: Evet

Özet

We first study coupled Hirota-Iwao modified KdV (HI-mKdV) systems and give all possible local and nonlocal reductions of these systems. We then present Hirota bilinear forms of these systems and give one-soliton solutions of them with the help of pfaffians. By using the soliton solutions of the coupled HI-mKdV systems for N = 2, 3, and N = 4 we find one-soliton solutions of the local and nonlocal reduced equations. (C) 2019 Elsevier B.V. All rights reserved.