Enhanced ultrasonic degradation of methylene blue using a catalyst-free dual-frequency treatment


Yusuf L. A., ERTEKİN Z., Fletcher S., Symes M. D.

Ultrasonics Sonochemistry, cilt.103, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 103
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.ultsonch.2024.106792
  • Dergi Adı: Ultrasonics Sonochemistry
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Applied Science & Technology Source, Chemical Abstracts Core, Chimica, Compendex, INSPEC, MEDLINE, Directory of Open Access Journals
  • Anahtar Kelimeler: Acoustic devices, Cavitation, Methylene blue, Sonication, Ultrasonic degradation
  • Hacettepe Üniversitesi Adresli: Evet

Özet

Methylene blue is one of the most common pollutants found in wastewater, primarily due to its widespread use in the dye industry. Consequently, it is imperative to explore environmentally friendly and efficient methods for degrading this pollutant into non-toxic byproducts. While ultrasonic degradation methods in combination with additives or catalysts have proven effective, such additives or catalysts may inadvertently contribute to secondary pollution. Moreover, the preparation of these catalysts imposes an additional burden in terms of effort and cost. To address these issues, this paper introduces a catalyst-free dual-frequency ultrasound degradation approach for methylene blue. The sonochemical quality of the cavitation bubbles is improved using this technique because the bulk solution is populated with two types of bubbles, whose mean sizes are determined by the dual ultrasound frequencies. The findings demonstrate that, under identical acoustic power density conditions, dual-frequency ultrasound consistently outperforms single-frequency modes across all investigated parameters. Furthermore, the larger the difference between the dual frequencies used, the more effective the degradation of methylene blue. Finally, after just 20 min of sonication, a degradation efficiency of 91% was achieved with dual frequencies of 20 and 80 kHz at an acoustic power density of 209.63 ± 6.94 W/L. Consequently, this technique offers an environmentally friendly, catalyst-free, and highly effective method for degrading methylene blue.