PLoS ONE, cilt.19, sa.4 April, 2024 (SCI-Expanded)
Different functional foods with bioactive nutrients are being explored for the management of NAFLD. Whey proteins are rich in bioactive peptides and are suggested to show antioxidant and anti-inflammatory effects. We aim to test the hypothesis that the whey protein supplementation following a high fat-high fructose (HFHF) diet would protect against liver damage, inflammation, endotoxemia and steatosis in male Wistar rats. 36 rats were randomized into four groups for 8 weeks as the HFHF diet group, HFHF diet and whey protein isolate (WPI-200mg/kg/day) group (HFHF+WPI), control (C) group, and C+WPI (200mg/kg/day) group. Rats fed with a HFHF diet had higher final body weight compared to C and C+WPI groups (p = 0.002). Thus, WPI showed no significant effects for the body weight of rats with a HFHF diet. On the other hand, the HFHF+WPI group had significantly lower abdominal circumference when compared with the HFHF group (p<0,001). Higher serum CRP levels were observed in the groups with a HFHF diet (p<0,001) and WPI supplementation showed no effects on CRP levels. Whey protein supplementation resulted with lower total liver damage score in HFHF+WPI group compared with the HFHF diet group (p<0,001). Conversely, higher liver damage scores were observed with the C+WPI group compared to C group (p<0,001). HFHF diet resulted with higher expression of TLR-4 in the liver meanwhile WPI supplementation showed no effects on liver TLR-4 expression. We observed higher colon Occludin expression in HFHF+WPI and C+WPI groups compared with HFHF and C groups (p<0,001). Our results showed that, whey protein supplementation might help improve liver damage associated with a high fat-high fructose diet and increase the expression of Occludin in the small intestine and colon.